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Abstract

The number of publications in the area of Cutting and Packing (C&P) has increased considerably over the last two dec-
ades. The typology of C&P problems introduced by Dyckhoff [Dyckhoff, H., 1990. A typology of cutting and packing
problems. European Journal of Operational Research 44, 145–159] initially provided an excellent instrument for the orga-
nisation and categorisation of existing and new literature. However, over the years also some deficiencies of this typology
became evident, which created problems in dealing with recent developments and prevented it from being accepted more
generally. In this paper, the authors present an improved typology, which is partially based on Dyckhoff’s original ideas,
but introduces new categorisation criteria, which define problem categories different from those of Dyckhoff. Furthermore,
a new, consistent system of names is suggested for these problem categories. Finally, the practicability of the new scheme is
demonstrated by using it as a basis for a categorisation of the C&P literature from the years between 1995 and 2004.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A typology is a systematic organisation of objects
into homogeneous categories on the basis of a given
set of characterising criteria. It is practically ori-
ented and meant to deal with ‘‘important’’ real
objects in the first place while hypothetical and/or
‘‘less important’’ real objects might be neglected.
A typology resembles a classification, however, with
respect to the above-mentioned focus, unlike the lat-
ter, it may not be complete (i.e. not all properties of
a criterion may be considered explicitly), and it may
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be ‘‘fuzzy’’ (i.e. the categories may not always be
defined precisely and properly distinguished from
each other).

A typology provides a concise view of ‘‘relevant’’,
‘‘important’’ objects and, thus, prepares the ground
for practically oriented research. Furthermore, it
helps to unify definitions and notations and,
by doing so, facilitates communication between
researchers in the field. Finally, if publications are
categorised according to an existing typology, it will
provide a faster access to the relevant literature.

A typology of OR problems, in particular, pro-
vides the basis for a structural analysis of the
underlying problem types, the identification and
definition of standard problems, the development
of models and algorithms, problem generators,
etc. For the area of cutting and packing (C&P),
.
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Dyckhoff (1990) has introduced such a typology,
which, unfortunately, has not always found satisfac-
tory international acceptance. Furthermore, almost
fifteen years since its initial publication, it became
obvious that Dyckhoff’s typology is insufficient with
respect to the inclusion of current developments.
Therefore, the authors decided to present a new,
improved typology here, providing a consistent sys-
tem of problem types which allows for a complete
categorisation of all known C&P problems and
the corresponding literature. Furthermore, it helps
to identify ‘‘blank spots’’, i.e. areas, in which no
or only very little research has been done. Finally,
the suggested typology is also open to new problem
types to be introduced in the future.

For the problem types included in the typology,
a straightforward system of notations is intro-
duced. Wherever possible, the problem categories
are named in accordance with existing notations.
By doing so, the authors do not only intend to avoid
unnecessary misinterpretations, or even confusion,
but also to improve the degree of acceptance among
researchers in the field. The system of notations will
also provide the basis for a system of abbrevia-
tions which can be used in a database of C&P
literature for a simple but precise characterisation.
The suggested abbreviations may also become part
of a more complex coding scheme of C&P
problems.

The remaining part of this paper is organised as
follows: In Section 2, the general structure of C&P
problems will be presented, not only because the
typology to be introduced here addresses C&P
problems, but also because the criteria for the defi-
nition of the respective problem categories are
closely related to elements of this structure. In Sec-
tion 3, Dyckhoff’s typology will be discussed, and,
in particular, some severe drawbacks are pointed
out which necessitate the development of a new,
improved typology. The new typology is outlined
in Section 4. In Section 5, criteria and correspond-
ing properties used in the new typology for the def-
inition of problem types are introduced. As far as
these criteria have also been used by Dyckhoff, they
were complemented by additional, potentially
important properties. Then (Section 6), in a first
step, two of the criteria, ‘‘type of assignment’’ and
‘‘assortment of small objects’’, are used to define
basic problem types. The additional application of
a third criterion, ‘‘assortment of large objects’’ leads
to intermediate problem types. Finally, the applica-
tion of the criteria ‘‘dimensionality’’ and ‘‘shape of
small items’’ provides refined problem types. In Sec-
tion 7 it is demonstrated how well-known problems
discussed in the literature fit into the suggested
typology. Furthermore, its usefulness and practica-
bility is demonstrated by categorising the literature
on C&P problems from the last decade (1995–
2004) accordingly. An analysis of recent trends in
C&P research, based on the categorisation, is given
in Section 8. The paper concludes with an out-
look on future work (Section 9), which particu-
larly sketches a potential, more refined scheme
for the categorisation of (publications on) C&P
problems.

2. Structure of cutting and packing problems

Cutting and packing problems have an identical
structure in common which can be summarised as
follows:

Given are two sets of elements, namely

• a set of large objects (input, supply) and
• a set of small items (output, demand),

which are defined exhaustively in one, two, three or
an even larger number (n) of geometric dimensions.
Select some or all small items, group them into one
or more subsets and assign each of the resulting sub-
sets to one of the large objects such that the geomet-

ric condition holds, i.e. the small items of each subset
have to be laid out on the corresponding large
object such that

• all small items of the subset lie entirely within the
large object and

• the small items do not overlap,

and a given (single-dimensional or multi-dimen-
sional) objective function is optimised. We note that
a solution of the problem may result in using some
or all large objects, and some or all small items,
respectively.

Formally, five sub-problems can be distin-
guished, which, of course, have to be solved simul-
taneously in order to achieve a ‘‘global’’ optimum:

• selection problem regarding the large objects,
• selection problem regarding the small items,
• grouping problem regarding the selected small

items,
• allocation problem regarding the assignment of

the subsets of the small items to the large objects,
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• layout problem regarding the arrangement of the
small items on each of the selected large objects
with respect to the geometric condition.

Special (types of) C&P problems are character-
ised by additional properties. In particular, they
may turn out to be degenerated in the sense that
they do not include all of the above-mentioned
sub-problems.

3. Dyckhoff’s typology

Fig. 1 summarises the main features of Dyck-
hoff’s typology. The author introduces four criteria
(characteristics) according to which C&P problems
are categorised. Criterion 1, dimensionality, cap-
tures the minimal number (1, 2,3,n > 3) of geomet-
ric dimensions which are necessary to describe the
required layouts (patterns) completely. Regarding
criterion 2, the kind of assignment of small items
to large objects, Dyckhoff distinguishes two cases,
indicated by B and V. B stands for the German
‘‘Beladeproblem’’, meaning that all large objects
have to be used. A selection of small items has to
be assigned to the large objects. V (for the German
‘‘Verladeproblem’’) characterises a situation in
which all small items have to be assigned to a selec-
tion of large objects. Criterion 3 represents the
assortment of the large objects. O stands for one
large object, I for several but identical large objects,
1. Dimensionality
(1) one-dimensional
(2) two-dimensional
(3) three-dimensional
(N) N-dimensional with N > 3

2. Kind of assignment
(B) all objects and a selection of items
(V) a selection of objects and all items

3. Assortment of large objects
(O) one object
(I) identical figure
(D) different figures

4. Assortment of small items
(F) few items (of different figures)
(M) many items of many different figures
(R) many items of relatively few different

(non-congruent) figures
(C) congruent figures

Fig. 1. Categorisation criteria, main types, and coding scheme of
Dyckhoff’s typology (cf. Dyckhoff, 1990, p. 154).
and D for several different large objects. Criterion 4
likewise characterises the assortment of the small
items. Dyckhoff distinguishes assortments consist-
ing of few items (F), many items of many different
figures (M), many items of relatively few different
figures (R), and congruent figures (C; we will be
using the notion ‘‘shape’’ here, instead of ‘‘figure’’).

When it was initially published, Dyckhoff’s work
represented a milestone in C&P research as it high-
lighted the common underlying structure of cutting
problems on one hand and packing problems on the
other. By doing so, it supported the integration and
cross-fertilisation of two largely separated research
areas. Unfortunately, on an international level his
typology has not always been accepted as widely
as was desirable, most probably due to the fact that
the provided coding scheme was not self-explana-
tory from the view point of an international (Eng-
lish-speaking) community of researchers. This
becomes particularly evident for the problem types
B and V.

Obviously, this deficiency could be overcome by
introducing more appropriate (English) names for
the respective problem categories/types. However,
some drawbacks have to be taken more seriously,
which became evident in the light of some recent
developments in the field of C&P.

• Not necessarily all C&P problems (in the narrow
sense) can be assigned uniquely to problem types

In Dyckhoff’s paper already, a well-known standard
problem, the Vehicle Loading Problem, has been
coded both as 1/V/I/F and 1/V/I/M (Dyckhoff,
1990, p. 155). F characterises a situation in which
few items of different shapes (i.e. items which are
different with respect to shape, size and/or orienta-
tion) are to be assigned. M represents a situation
with many items of many different shapes. Apart
from the fact that it is definitely desirable to have
only one option available for the assignment of a
well-known standard problem like the Vehicle
Loading Problem, it does not become clear how this
differentiation will provide a set of problem catego-
ries which is more homogeneous (with respect to
model building and the development of algorithms)
than a single type, which includes both categories.
(It is interesting to note that problem category F
only appears once in Dyckhoff’s examples of com-
bined types (1990, p. 155). One may take this as
an additional indicator that this kind of differentia-
tion might not prove very promising in the end.)
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• Dyckhoff’s typology is partially inconsistent; its
application might have confusing results

In the literature, a particular two-dimensional pack-
ing problem, the so called ‘‘Strip-Packing Problem’’,
namely the packing of a set of small items (often rect-
angles) of different sizes into a single rectangle with
fixed width and minimal (variable) length (Jacobs,
1996; Martello et al., 2003), has attracted consider-
able attention. Most probably, this problem would
be coded both by researchers and by practitioners
as 2/V/O/M, while in Dyckhoff’s typology it has been
assigned the notation 2/V/D/M. Dyckhoff justifies
this notation – rather artificially from our point of
view – by saying that this problem ‘‘. . . is equivalent
to an assortment selection problem where the stock
is given by an infinite number of objects of this width
and of all possible lengths and where only one object
has to be chosen from stock, namely that of minimal
length’’ (1990, p. 155). What makes Dyckhoff’s char-
acterisation of the problem even more confusing is
the fact that he calls it a Two-Dimensional Bin Pack-

ing Problem (Dyckhoff, 1990, p. 155). Not only in our
understanding (also see Lodi et al., 2002a; Miyazawa
and Wakabayashi, 2003; Faroe et al., 2003) it would
have been more obvious to reserve this name for the
natural extension of the Classic (One-Dimensional)

Bin Packing Problem, i.e. the packing of a set of small
items of different sizes into a minimum number of
rectangles (large objects) of identical size. The nota-
tion becomes even more questionable for two-dimen-
sional problems where both width and length are
variables, and, likewise, for three-dimensional prob-
lems, where width, length and/or height are vari-
ables. We conclude that – in order to avoid
confusion about the contents of problem notations
and definitions – it is advisable to distinguish prob-
lem types with respect to fixed and with respect to
variable dimensions.

• Application of Dyckhoff’s typology does not
necessarily result in homogeneous problem
categories

Gradišar et al. (2002) notice that in the case of one-
dimensional cutting, where a large number of small
items of relatively few different shapes has to be pro-
duced from standard material in unlimited supply,
two situations should be distinguished if the stan-
dard material comes in different sizes. In the first sit-
uation, the large objects can be separated into to a
few groups of identical size, while in the second sit-
uation all large objects are entirely different. In
Dyckhoff’s coding scheme both situations would
be included in the problem type 1/V/D/R. Gradišar
et al. (2002, p. 1208) now argue that the inclusion in
the same problem category is not very useful
because the two situations require different solution
approaches, namely a pattern-oriented approach for
cutting problems with few groups of identical large
objects and an item-oriented approach for such
problems with entirely different large objects. We
just would like to add that the same can be observed
for problems of higher dimensions and for packing
problems, as well. Therefore, we conclude that, in
order to develop categories of homogeneous prob-
lems, the properties (main types) of Dyckhoff’s third
criterion, the assortment of large objects, should be
further differentiated.

The latter aspect turns out to represent the most
severe limitation of Dyckhoff’s typology, as it gener-
ally questions whether one of the central goals of
the introduction of a problem typology is achieved,
namely to provide a homogeneous basis for the
development of models and algorithms.

4. Outline of the new typology and overview of

problem categories

Problem types can generally be defined as ele-
mentary types or combined types. Types which
can be used as a basis for the development of mod-
els, algorithms, and problem generators, and for the
categorisation of literature must be relatively homo-
geneous. Consequently, it is very likely that they
must be introduced as combined types, which stem
from the subsequent or simultaneous application
of different categorisation criteria. Five criteria
will be used here for the definition of combined
problem types of C&P problems, namely ‘‘dimen-
sionality’’, ‘‘kind of assignment’’, ‘‘assortment of
large objects’’, ‘‘assortment of small items’’, and
‘‘shape of the small items’’.

It goes without saying that each typology of C&P
problems should offer an option to characterise a
given problem with respect to the number of prob-
lem-relevant dimensions. Consequently, this crite-
rion will be adopted directly from Dyckhoff’s
typology.

Dyckhoff’s criterion ‘‘kind of assignment’’ has
proven to be useful in distinguishing between differ-
ent kinds of C&P problems in the past. Therefore, it
will also be used here; however, in order to avoid the
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German notations ‘‘Verladeproblem’’ and ‘‘Belade-
problem’’, the authors will refer to the correspond-
ing problem categories/elementary types – in a
general sense – as ‘‘input minimisation’’ and ‘‘out-
put maximisation’’, respectively.

On the other hand, in order to overcome the
above-sketched limitations of Dyckhoff’s typology,
the two criteria ‘‘assortment of large objects’’ and
‘‘assortment of small items’’ will be redefined and/
or supplemented with new properties.

Unlike in Dyckhoff’s typology, the two criteria
‘‘kind of assignment’’ and ‘‘assortment of small
items’’ will not be taken for the definition of two dif-
ferent fields in a classification scheme for C&P prob-
lems. Instead, they will be used in combination in
order to define basic problem types. These basic
problem types (which already represent combined
types in the sense of Dyckhoff; see Dyckhoff, 1990,
p. 154) provide the core objects for the introduction
of a new, more widely accepted nomenclature.
Existing names have been adopted as far as possible,
in particular, wherever there was no or only a small
probability that their use would result in misinter-
pretations of their contents.

The subsequent application of the criterion
‘‘assortment of large objects’’ will provide intermedi-

ate problem types. Further characterisation with
respect to the number of problem relevant dimen-
sions (‘‘dimensionality’’) and – in the case of prob-
lems of two and more dimensions – with respect
to the ‘‘shape of small items’’ will provide refined

(combined) problem types. The name of each of
these refined types consists of the name of the
underlying intermediate type and one or two addi-
tional adjectives which indicate the respective prop-
erties. Refined problem types will be used for the
categorisation of publications, here.

An instance of a specific refined problem type will
exhibit all the properties which have been used for
the definition of the respective category and proba-
bly additional constraints and/or characteristics. A
problem instance which only exhibits the defining
properties, but no additional constraints or charac-
teristics could be interpreted as being (an instance
of) a (first-level) standard problem (type). First-level

non-standard problems (problem types) are charac-
terised by the properties defining the respective
problem category and additional constraints and/
or characteristics. Of course, in particular when
considered in scientific research, they may represent
well-known standard problems as well. In such case,
in order to distinguish them from the previously
mentioned ones, we would call them second-level

standard problems whenever necessary. The identifi-
cation of standard problems (types) represents a
major goal of our typology. These problem types
provide the basis of scientific research, in particular
for the development of (standard) models, algo-
rithms, and problem generators.

Fig. 2 gives an overview of the previously intro-
duced types and their relationships. In this paper,
we concentrate on ‘‘pure’’ C&P problem types in
the above-defined sense (see Section 2), i.e. problems
in which the solution consists of information on the
set of patterns according to which the (selected)
small items have to be cut from/packed into (a sub-
set of) the large objects and the corresponding objec-
tive function value. The inclusion of additional
aspects which extend the view of the planning prob-
lem beyond the core of cutting or packing will give
rise to an extended problem type or a problem exten-

sion. Apart from information on the patterns, a solu-
tion to a problem of this kind includes additional
information on other problem-relevant aspects such
as the number of different patterns (as in the pattern
minimisation problem; cf. Vanderbeck, 2000), pro-
cessing sequences (as in the pattern sequencing prob-
lem; cf. Foerster and Wäscher, 1998; Yanasse, 1997;
Yuen, 1995; Yuen and Richardson, 1995) or lot-sizes
(cf. Nonås and Thorstenson, 2000). We would like to
point out, however, that the ‘‘C&P-related part’’ of
problems of this type can be categorised in the same
way as ‘‘pure’’ problems.

When defining basic, intermediate and refined
problem types, it will be necessary to introduce cer-
tain assumptions. Some of these assumptions are
related to general properties of the problem and
restrict the view to single-objective, single-period
and deterministic problems. Replacing the assump-
tions by different ones leads to problem types which
will be considered as problem (type) variants, here.
Problems with multiple objectives (cf. Wäscher,
1990), stochastic problems (in which, e.g., the sizes
of the large objects are random variables; cf. Das
and Ghosh, 2003), fuzzy problems (where the
costs of the large objects are fuzzy coefficients; cf.
Katagiri et al., 2004), or on-line problems (in
which, e.g., parcels arrive one after another at a
packing station and a decision has to be made
immediately on their arrival where they should be
packed into a container; cf. Hemminki et al., 1998;
Abdou and Elmasry, 1999) belong to this category.
A second class of assumptions also leading
to problem variants arises from C&P-specific



C&P-Related
Problem

Types

Problem
Extensions Pure C&P Problem Types

additional aspects aspects of C&P only

kind of assignment
output value max,
input value min

others, e.g. multi-dimensional objective
functions

assortment of small items

uniformly structured demands others, e.g. varying demands

Basic Problem Types

assortment of large objects
rectangular, homogeneous
material others, e.g. inhomogeneous material

no mixes, orthogonal layout others, e.g. non-orthogonal layout

Problem
Variants

different
assumptions

Refined Problem
Types

First-Level
Standard Problems

First-Level
Non-Standard Problems

no further constraints additional constraints

Second-Level
Standard Problems Special Problems

assumptions

assumptions

assumptions

Intermediate Problem Types

shape of small items
assumptions

dimensionality

1-, 2-, 3- dimensional assumptions others, e.g. n-dimensional

Fig. 2. Overview of problem types related to C&P problems.
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aspects. They will be explained in greater detail
later.

5. (Modified) criteria for the definition of problem

types

5.1. Dimensionality

We distinguish between one-, two-, and three-

dimensional problems. In the literature, occasion-
ally, also problems with more than three geometric
dimensions are considered (e.g., Lins et al., 2002).
Problems of this type (n > 3) are looked upon as
variants, here.

5.2. Kind of assignment

Again, as in Dyckhoff (1990), we introduce two
basic situations, of which we prefer to speak of out-
put (value) maximisation and input (value) minimi-

sation, respectively.

• output (value) maximisation

In the case of output (value) maximisation, a set of
small items has to be assigned to a given set of large
objects. The set of large objects is not sufficient to
accommodate all the small items. All large objects
are to be used (in other words: there is no selection
problem regarding the large objects), to which a
selection (a subset) of the small items of maximal
value has to be assigned.

• input (value) minimisation

Again, a given set of small items is to be assigned to
a set of large objects. Unlike before, in the case of
input (value) minimisation the set of large objects



identical small items

weakly heterogeneous assortment

strongly heterogeneous assortment

assortment of small items 

Fig. 3. Cases to be distinguished with regard to the assortment of
small items.
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is sufficient to accommodate all small items. All
small items are to be assigned to a selection (a
subset) of the large object(s) of minimal ‘‘value’’.
There is no selection problem regarding the small
items.

Here, ‘‘output (value) maximisation’’ and ‘‘input
(value) minimisation’’ are used in a general, non-
specific manner. When treating specific problems,
the ‘‘value’’ of objects/items has to be defined more
precisely and may be represented by costs, revenues,
or material quantities. Often, the value of the
objects/items can be assumed to be directly propor-
tional to their size such that the objective function
considers length (one-dimensional problems), area
(two-dimensional problems), or volume (three-
dimensional problems) maximisation (output) or
minimisation (input). In such cases, it might also
be possible to translate both ‘‘output (value) maxi-
misation’’ and ‘‘input (value) minimisation’’ into
‘‘waste minimisation’’, i.e. the minimisation of the
total size of unused parts of the (selected) large
objects. In the environment of cutting problems
often the term ‘‘trim-loss minimisation’’ is used.

We would also like to point out that – in order to
define basic problem types – only these two situa-
tions will be considered here. Of course, problems
encountered in practice and/or discussed in the
literature may be characterised by the fact that a
selection problem exists with respect to both large
objects and small items. This requires an extended
objective function which combines revenues
and costs (‘‘profit maximisation’’). Also situations
exist in which more than one objective function
may have to be taken into account. Again, problems
of this type will be considered as problem variants
here.
5.3. Assortment of small items

With respect to the assortment of the small items
we distinguish three cases, namely identical small

items, a weakly heterogeneous assortment of small

items, and a strongly heterogeneous assortment of
small items (cf. Fig. 3):

• identical small items

Regarding their problem-relevant dimensions (i.e.
their extension in the problem-relevant number of
dimensions ‘‘length’’, ‘‘width’’, and ‘‘height’’), all
items are of the same shape and size. In the output
maximisation case, it can be assumed that the (sin-
gle) item type has an unlimited demand. This prob-
lem category is identical with Dyckhoff’s
elementary type C (‘‘congruent shapes’’; cf. Dyck-
hoff, 1990, p. 154).

• weakly heterogeneous assortment

The small items can be grouped into relatively
few classes (in relation to the total number of
items), for which the items are identical with
respect to shape and size. By definition, small
items of identical shape and size which require
different orientations are treated as different
kinds of items. The demand of each item type is
relatively large, and may or may not be limited
by an upper bound. This category corresponds
to Dyckhoff’s elementary type R (‘‘many items
of relatively few different (non-congruent)
shapes’’; cf. Dyckhoff, 1990, p. 154).

• strongly heterogeneous assortment

The set of small items is characterised by the fact
that only very few elements are of identical shape
and size. If that occurs, the items are treated as
individual elements. Consequently, the demand
of each item is equal to one. This category
includes Dyckhoff’s elementary types M (‘‘many
items of many different shapes’’) and F (‘‘few
items (of different shapes)’’; cf. Dyckhoff, 1990,
p. 154).

For the definition of standard problems we
assume that the set of small items is uniformly struc-
tured, i.e. that it does not contain items with large
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demands and others with small demands. A prob-
lem with strongly varying demands (cf. Riehme
et al., 1996) will be considered as a variant, here.

5.4. Assortment of large objects

With respect to the assortment of the large
objects we introduce the following cases (cf. Fig. 4):

• one large object

In this case the set of large objects consists of a
single element. The extension of the large object
may be fixed in all problem-relevant dimensions
(‘‘all dimensions fixed’’), or its extension may be
variable in one or more dimensions (‘‘one or more

variable dimensions’’). The first category is identi-
cal with Dyckhoff’s type O, while the second cat-
egory represents an extension of Dyckhoff’s set of
elementary types (cf. Dyckhoff, 1990, p. 154).

• several large objects

With respect to the kind of problems which are
described in the literature, in the case of several
large objects it does not appear necessary to dis-
tinguish between fixed and variable dimensions;
only fixed dimensions will be considered. In anal-
ogy to the categories which have been introduced
for the assortment of the small items, we distin-
guish between identical large objects, a weakly

and a strongly heterogeneous assortment of large

objects. By doing so, we again extend Dyckhoff’s
typology, who only identifies large objects with
identical (type I) and different shapes (type D).
one large object

all dimensions fixed

one or more variable dimensions

several large objects (all dimensions fixed)

identical large objects

weakly heterogeneous assortment

strongly heterogeneous assortment

assortment of large objects

Fig. 4. Cases to be distinguished with regard to the assortment of
large objects.
For the definition of basic problem types we
assume that – in the two- and three-dimensional
case – all large objects are of rectangular shape
(rectangles, cuboids) and consist of homogeneous
material. Non-rectangular large objects (e.g., circu-
lar objects such as discs) and/or non-homogeneous
large objects (e.g., stock material including defects)
give rise to problem variants, again.
5.5. Shape of small items

In the case of two- and three-dimensional prob-
lems, for the definition of refined problem types
we further distinguish between regular small items

(rectangles, circles, boxes, cylinders, balls, etc.)
and irregular (also called: non-regular) ones. In the
two-dimensional case, the former are sometimes fur-
ther distinguished into rectangular items, circular
items, and others.

In accordance with what is usually considered in
the literature, we assume that rectangular items are
to be laid out orthogonally. Furthermore, the set
of small items either consists of regular or irregular
elements. Problems which allow for non-orthogonal
layouts and/or mixes of regular and irregular
small items will be looked upon as problem variants
again.
6. Basic, intermediate and refined problem types

6.1. Basic problem types

Basic types of C&P problems are developed by
combination of the two criteria ‘‘type of assign-
ment’’ and ‘‘assortment of small items’’. Fig. 5
depicts the relevant combinations and the corre-
sponding basic problem types.

In the following sections these problem types will
be characterised in greater detail.
6.1.1. Output maximisation types

Problems of the output maximisation type have
in common that the large objects are only supplied
in limited quantities which do not allow for accom-
modating all small items. As the value of the accom-
modated items has to be maximised, all large objects
will be used. In other words, generally there is a
selection problem regarding the small items, but
none regarding the large objects.

According to Fig. 5, we distinguish the following
(basic, output maximisation) problem types:
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Fig. 5. Basic problem types.
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• Identical Item Packing Problem

This problem category consists of the assignment
of the largest possible number of identical small
items to a given, limited set of large objects. We
note that, due to the fact that all the small items
are identical, there is in fact no real selection
problem regarding the small items, and, further-
more, neither a grouping nor an allocation prob-
lem occurs. In other words, the general structure
of C&P problems (cf. Section 2) is reduced to a
layout problem regarding the arrangement of
the (identical) small items on each of the large
objects with respect to the geometric condition.

• Placement Problem

In the literature, problems of this category are
known under many different names. In order to
avoid additional confusion, here we have intro-
duced a somewhat more neutral notion. Here,
the term ‘‘Placement Problem’’ defines a problem
category in which a weakly heterogeneous assort-
ment of small items has to be assigned to a given,
limited set of large objects. The value or the total
size (as an auxiliary objective) of the accommo-
dated small objects has to be maximised, or,
alternatively, the corresponding waste has to be
minimised.

• Knapsack Problem

According to our interpretation, the Knapsack
Problem represents a problem category which is
characterised by a strongly heterogeneous assort-
ment of small items which have to be allocated to
a given set of large objects. Again, the availability
of the large objects is limited such that not all
small items can be accommodated. The value of
the accommodated items is to be maximised.
6.1.2. Input minimisation types

Problems of the input minimisation type are char-
acterised by the fact that the supply of the large
objects is large enough to accommodate all small
items. Their demands have to be satisfied completely,
so that no selection problem regarding the small
items exists. The value of the large objects necessary
to accommodate all small items has to be minimised.
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several large objects

identical large objects ⇒

⇒
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Fig. 6. Intermediate types of the placement problem.
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Fig. 7. Intermediate types of the knapsack problem.
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• Open Dimension Problem

The Open Dimension Problem defines a problem
category in which the set of small items has to be
accommodated completely by one large object or
several large objects. The large objects are given,
but their extension in at least one dimension can
be considered as a variable. In other words, this
problem involves a decision on fixing the exten-
sion(s) in the variable dimension(s) of the large
objects. Only the part(s) of the large object(s) nec-
essary to accommodate the items completely rep-
resents input within the meaning of the general
structure of C&P problems (cf. Section 2). The
value of the input (or a corresponding auxiliary
measure like length, size, or volume) is to be mini-
mised. For the definition of basic problem types
we restrict ourselves to large objects which –
before and after having fixed their extension(s) in
the variable dimension(s) – are rectangles (two-
dimensional problems) or cuboids (three-dimen-
sional problems). By doing so, in particular those
problems are excluded from our analysis in which
the small items have to be enclosed in non-rectan-
gular large objects of minimal size (e.g., when cir-
cles have to be packed into another circle of
minimal radius; cf. Birgin et al., 2005, pp. 27ff.),
or in which the density of the packing has to be
maximised (e.g., as in the case of two-dimensional
lattice packing; cf. Stoyan and Patsuk, 2000).

• Cutting stock problem

Problems of this category require that a weakly
heterogeneous assortment of small items is com-
pletely allocated to a selection of large objects of
minimal value, number, or total size. The exten-
sion of the large objects is fixed in all dimensions.
We point out that we do not make any assump-
tions on the assortment of the large objects. It
may consist of identical objects, but it could also
be a weakly or strongly heterogeneous assortment.

• Bin packing problem

In contrast to the previously described problem
category, this one is characterised by a strongly
heterogeneous assortment of small items. Again,
the items have to be assigned to a set of identical
large objects, a weakly heterogeneous or strongly
heterogeneous assortment of large objects. The
value, number, or total size of the necessary large
objects (or another corresponding auxiliary
objective) has to be minimised.
6.2. Intermediate problem types

In order to define more homogeneous problem
types the above-developed basic problem types are
structured further into intermediate problem types.
This is achieved by taking into account the assort-
ment of the large objects as an additional differenti-
ating criterion. Figs. 6 and 7 depict the intermediate
problem types related to output maximisation, Figs.
8 and 9 the intermediate types related to input min-
imisation. Figs. 6–9 also present our suggestions for
naming these types.

We note at this stage that – due to its simple
problem structure – it is not necessary to further dif-
ferentiate the Identical Item Packing Problem. In
order to solve a problem of this type, it can be split
into a set of independent sub-problems where each
sub-problem is related to a particular large object
(or a particular type of large objects, if the large
objects are at least partially identical) to which the
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largest possible number of small items has to be
assigned. Consequently, in this typology the name
Identical Item Packing Problem will also be reserved
for a (combined) problem type in which the largest
possible number of identical small items has to be
assigned to a single given large object. Furthermore,
with respect to the fact that the existing literature on
the Open Dimension Problem concentrates on a
very limited number of standard problems, we also
refrained from structuring this basic problem type
in greater detail at this stage.

Figs. 10 and 11 summarise the system of interme-
diate problem types which has been introduced
here. They can be interpreted as the ‘‘landscape’’
of C&P problems. Also, for each intermediate prob-
lem type, an abbreviation derived from the corre-
sponding name is given which allows for a unique
identification of each type.

6.3. Refined problem types

In a final step, refined problem types are obtained
by application of the criterion ‘‘dimensionality’’ and
– for two- and three-dimensional problems – of the
criterion ‘‘shape of the small items’’. The resulting
subcategories are characterised by adjectives which
are added to (the names of) the intermediate prob-
lem types (IPT) according to the following system:
weakly
heterogeneous

strongly
heterogeneous
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{1, 2,3}-dimensional {rectangular, circular, . . . ,
irregular} {IPT}.

7. Specific problem categories

In order to make the consequences of the sug-
gested typology clearer, we will now explain the dif-
ferent categories in further detail by giving examples
of specific cutting and packing problems (described
in the literature) which belong to the problem types
introduced above. In particular, well-known stan-
dard problems will be pointed out as representatives
of the respective categories.

7.1. Identical Item Packing Problem

A well-known (regular/rectangular) representa-
tive of this problem type is the (Classic) Manufac-

turer’s Pallet Loading (Packing) Problem (MPLP;
Dowsland, 1987; Morabito and Morales, 1998), in
which a single pallet has to be loaded with a maxi-
mal number of identical boxes (the problem itself
– without this particular name – has been described
even earlier in the literature, see, e.g., Steudel, 1979;
Smith and de Cani, 1980). It is usually assumed that
the boxes are loaded in layers, in which all boxes
have the same vertical orientation. By means of this
assumption, the problem is actually reduced to a
two-dimensional one (cf. Bischoff and Ratcliff,
1995, p. 1322; also see Dyckhoff’s (1990, p. 155)
characterisation of the problem as being of type 2/
B/O/C), namely to the problem of assigning a max-
imal number of small identical rectangles (represent-
ing the ‘‘bottom’’ surfaces of the boxes) to a given
large rectangle (representing the pallet). In other
words: The MPLP is a two-dimensional, rectangu-
lar Identical Item Packing Problem (IIPP). The Cyl-

inder Packing Problem (Correia et al., 2000, 2001;
Birgin et al., 2005) possesses an almost identical
problem structure, in which – instead of identical
rectangles – a maximal number of non-overlapping
circles of the same size has to be assigned to a given
rectangle (two-dimensional, circular IIPP; also see
Isermann, 1991). Among others, it can be found in
the production of cans where the circles represent
the lids and bottoms of (cylindrical) cans to be cut
from tin plates, or in logistics management, where
cylindrical cans have to be packed on a pallet.
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The Single-Box-Type Container Packing Problem

(as discussed in George, 1992) is an example of a
three-dimensional special case of the Rectangular
(i.e. regular) IIPP. It requires the loading of a single
container (large object) with a maximum number of
identical boxes (small items).

7.2. Single Large Object Placement Problem

The Bounded Knapsack Problem and the
Unbounded Knapsack Problem (as described in Mar-
tello and Toth, 1990, pp. 82–91, and pp. 91–103,
respectively) are one-dimensional representatives
of the SLOPP type. Both require that a (single)
knapsack (large object) of given limited weight
capacity has to be packed with a selection (subset)
from a given set of small items of given weights
and values, such that the value of the packed items
is maximised. The assortment of the small items is
weakly heterogeneous, only relatively few different
item types can be identified. The number of times
an item of a particular type can be packed may
be limited (bounded problem), or unlimited
(unbounded problem).

Haims and Freeman (1970) introduce a two-
dimensional problem of the SLOPP type which they
name Template-Layout Problem. According to their
general definition, a weakly heterogeneous set of
regular or non-regular small items (‘‘forms’’) has
to be cut from a single large rectangle such that
the value of the cut items is maximised. In the sub-
sequent discussion, the authors concentrate on rect-
angular small items (i.e. the discussed problem is of
the two-dimensional, rectangular SLOPP type). In
Christofides and Whitlock, 1977; Beasley, 1985a;
Christofides and Hadjiconstantinou, 1995, e.g., the
authors also restrict themselves to rectangular small
items. They call it the Two-Dimensional Cutting

Problem (more precisely, we would rather call it
the two-dimensional, rectangular SLOPP). The
number of times an item of a particular type can
be cut from the large rectangle may be constrained
explicitly by an upper bound (as in Christofides
and Whitlock, 1977; Wang, 1983; Beasley, 1985b;
Christofides and Hadjiconstantinou, 1995; Beasley,
2004). In Scheithauer and Sommerweiß (1998) the
unbounded version of this problem (also see Herz,
1972; Beasley, 1985c) is discussed under the name
Rectangle Packing Problem. In the (Constrained)

Circular Cutting Problem (Hifi and M’Hallah,
2004; according to the suggested typology, the prob-
lem would be characterised as a two-dimensional,
circular SLOPP), a rectangular plate (large object)
of given size has to be cut down into circular items,
which are of m different types (radii). The number of
small items which may be cut is bounded, and the
objective is to minimise the unused space of the
plate.

What has been called the Single Container Load-

ing (Packing) Problem in the literature (George
and Robinson, 1980; Bortfeldt et al., 2003) is an
example of the three-dimensional, rectangular
SLOPP. It requires loading a fairly large, weakly
heterogeneous consignment of boxes into a given
container such that the volume or value of the
packed boxes is maximised, or, equivalently, the
unused space of the container or the value of
the unpacked boxes is minimised (also see Ratcliff
and Bischoff, 1998; Bortfeldt and Gehring, 1998).
A set of weakly heterogeneous cargo has to be
packed on a pallet in the Distributor’s (Single)

Pallet Loading Problem (Hodgson, 1982; Bischoff
et al., 1995). Unlike the Manufacturer’s Pallet
Loading Problem, this is a truly three-dimensional
rectangular problem, as – due to the different box
sizes – it may not be sufficient to concentrate on
layered packing if the space available above the
pallet is to be used in the best possible way. In
real-world Single Container and Pallet Loading
Problems, the number of boxes which are to be
packed of a particular box type will be limited by
an upper bound. Hifi (2004), on the other hand,
considers the unconstrained case.

7.3. Multiple Identical Large Object Placement

Problem

Straightforward extensions of the single large
object placement problem could take into account
multiple identical large objects. This could give rise,
e.g., to the (Bounded) Multiple Knapsack Problem,
the Multiple Stock Sheet Cutting Problem, etc.
Problems of this type (MILOPP), however, have
not yet been discussed in the literature, at least
not to the knowledge of the authors of this paper.

7.4. Multiple Heterogeneous Large Object

Placement Problem

Another extension of the Single Large Object
Placement Problem which takes into account multi-
ple, non-identical large objects also appears to
having been treated very rarely in the literature. A
one-dimensional cutting problem is described in
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Gradišar et al. (1999, p. 559, case 2), in which a
weakly heterogeneous assortment of order lengths
has to be cut from a set of input lengths which are
all different (one-dimensional MHLOPP). The sup-
ply of input lengths is not sufficient to satisfy all
orders. Therefore, the objective is to minimise the
total size of the uncut order lengths.

Eley (2003) considers three-dimensional con-
tainer loading problems, in which a weakly hetero-
geneous consignment of boxes has to be packed
into containers available in different sizes. In one
of the discussed situations, the available container
space is not sufficient to accommodate all boxes.
Therefore, a selection of boxes has to be determined
that maximises the volume utilisation, or, alterna-
tively, the value of the packed boxes (three-dimen-
sional, rectangular MHLOPP). An exact algorithm
for the unconstrained version of this problem is
introduced in Hifi (2004).

7.5. Single Knapsack Problem

The Classic (One-Dimensional) Knapsack Prob-

lem, also called 0-1-Knapsack Problem (Martello
et al., 2000; Martello and Toth, 1990, p. 13) which
requires packing a given set of (different) items of
given weights and values into a (single) knapsack
of given limited weight capacity such that the value
of the packed items is maximised (cf. Martello and
Toth, 1990, pp. 3, 13–77) obviously is a special case
of this problem type (i.e. the one-dimensional SKP).
The Subset-Sum Problem (cf. Martello and Toth,
1990, pp. 105ff.) is a 0-1-knapsack problem in which
the weight of an item is identical with its value. A
straightforward extension of this problem, namely
the Multiconstraint (0–1) Knapsack Problem
(Gavish and Pirkul, 1985; Drexl, 1988; Thiel and
Voss, 1994, the problem is also called m-Constraint

Knapsack Problem, cf. Schilling, 1990), also belongs
to this category. Apart from the capacity constraint,
m � 1 additional constraints have to be satisfied by
the packed items.

Extensions of the Classic (One-Dimensional)
Knapsack Problem into two and more geometric
dimensions give rise to the Two-Dimensional (Single

Orthogonal) Knapsack Problem (Caprara and Mon-
aci, 2004; also see e.g., Healy and Moll, 1996), in
which a set of small, distinct rectangles has to be
cut from a single large rectangle (two-dimensional,
rectangular SKP), and the Three-Dimensional (Sin-

gle Orthogonal) Knapsack Problem (also called
Knapsack Container Loading Problem; cf. Pisinger,
2002), in which rectangular-shaped boxes have to
be packed into a container (three-dimensional, rect-
angular SKP; also see Bischoff and Marriott, 1990;
Scheithauer, 1999; Bortfeldt and Gehring, 2001).
In both cases usually the value of the cut/packed
small items is to be maximised. If their value can
be assumed to be proportional to their size/volume,
then equivalently the unused space of the large rect-
angle or the container can be minimised. Fekete and
Schepers (1997) finally look at the n-Dimensional

(Single Orthogonal) Knapsack Problem, which
extends the Classic Knapsack Problem into n geo-
metric dimensions.

George et al. (1995) describe a two-dimensional,
circular SKP, in which (the bottom of) a container
(rectangle) has to be filled with a set of distinct pipes
(circles) such that the value of the selected pipes is
maximised.
7.6. Multiple Identical Knapsack Problem

In the literature, a specific one-dimensional case
of the Multiple Identical Knapsack Problem is
known as the Maximum Cardinality Bin Packing

Problem, in which a fixed number of large objects
with a given, identical capacity and a (strongly het-
erogeneous) set of small, indivisible items of given
weights are given. The objective is to maximise the
number of packed items (Labbé et al., 2003).

The Multiple Container Packing Problem (as
described in Raidl and Kodydek, 1998) is a three-
dimensional (regular) special case of this problem
category, in which a given number of identical con-
tainers has to be filled with a (strongly heteroge-
neous) set of items of given weights and values.
The total value of the packed items has to be
maximised (three-dimensional, rectangular SKP).
According to the authors’ knowledge, this is the
only representative of this problem type discussed
in the literature so far.
7.7. Multiple Heterogeneous Knapsack Problem

Martello and Toth (1990, pp. 157–187), also see
Pisinger (1999) consider the 0-1 Multiple Knapsack

Problem, which is a one-dimensional representative
of this problem type (i.e. a one-dimensional
MHKP). A strongly heterogeneous set of small
items, each of which is characterised by a specific
weight and profit, has to be packed into a set of
knapsacks of distinct capacities. For each knapsack,
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the packed items must not exceed the available
capacity, and the total profit of the small items
which are packed has to be maximised.

7.8. Open Dimension Problem

In the literature, Open Dimension Problems are
usually discussed for a single large object. Obvi-
ously, problems of this kind are only possible in
two and more dimensions.

The (Two-Dimensional) Strip Packing Problem is
an Open Dimension Problem in which a set of two-
dimensional small items has to be laid out on a rect-
angular large object; the width of the large object is
fixed, its length is variable and has to be minimised.
In case the small items are rectangles (cf. Kröger,
1995; Jacobs, 1996; Hopper and Turton, 2001a;
Martello et al., 2003) one may also refer to this
problem as the Rectangular Strip Packing Problem,
or even as the Orthogonal Rectangular Strip Packing
Problem, if the small rectangles have to be laid out
on the large object orthogonally. If the rectangles
have to be packed ‘‘in levels’’, this problem is also
called Level Packing Problem (cf. Lodi et al., 2004).

In case the small items are non-regularly shaped
objects (Oliveira and Ferreira, 1993; Bennell and
Dowsland, 2001), like in the shoe-manufacturing
industry, where they may represent pieces of shoes
to be cut from a roll of leather, the problem (i.e.
in case of the two-dimensional, irregular ODP,
according to the notation introduced here) is also
referred to as the Irregular Strip Packing Problem

(Hopper and Turton, 2001b, p. 257) or the Nesting

Problem (cf. Oliveira and Ferreira, 1993; Oliveira
et al., 2000; Carravilla et al., 2003). With respect
to applications in specific areas, the same problem
may also be known under different names (e.g., as
the Marker-Making Problem in the apparel indus-
try; cf. Li and Milenkovic, 1995).

A three-dimensional, rectangular Open Dimen-
sion Problem with a single variable dimension
(length) occurs in distribution planning, when a
given set of cargo (small items) has to be fitted into
a container in such a way that the least space in
terms of container length is used (Scheithauer,
1991; Miyazawa and Wakabayashi, 1997).

In the Minimal Enclosure Problem (Milenkovic
and Daniels, 1999), also called Rectangular Packing

Problem (Hifi and Ouafi, 1998), a set of two-dimen-
sional items has to be laid out such that it can be
included in a rectangular (large) object of minimal
area. In this case, the extension of the large objects
in both dimensions (width and length) is variable.
The small items may be of rectangular (cf. Hifi and
Ouafi, 1998), circular (Stoyan and Yaskov, 1998),
or irregular shape (Milenkovic and Daniels, 1999).

At least to our knowledge, Open Dimension
Problems with more than one large object have
not been discussed frequently in the area of C&P.
Benati (1997) considers a two-dimensional problem
with several large objects of different widths which
all have an infinite length. However, we would like
to point out that the well-studied (Classic) Multi-

processor Scheduling Problem could be interpreted
as a one-dimensional problem of this kind. In this
problem, a given set of indivisible jobs (small items)
with given processing times (length) has to be allo-
cated to a given number of identical processors
(large objects) such that the maximal completion
time (also called ‘‘schedule length’’) is minimised (cf.
Heuer, 2004; Brucker, 2004, pp. 107–154; Bła _zewicz
et al., 2001, pp. 137–203). The completion time of a
processor is the time necessary to process all the
jobs which have been assigned to this processor.
In other words, an identical, minimal time-capacity
(extension in the variable dimension) has to be
assigned to each of the processors that is large
enough that all the jobs can be completed. Due to
the fact that the Multiprocessor Scheduling Prob-
lem and other related problems are hardly ever dis-
cussed with respect to C&P problems, we exclude
Open Dimension Problems with more than one
large object from the following considerations.

7.9. Single Stock-Size Cutting Stock Problem

Problems of this type include the Classic One-

Dimensional Cutting Stock Problem (Gilmore and
Gomory, 1963; Wäscher and Gau, 1996), in which
standard (or: stock) material of a specific, single
length has to be cut down into a weakly heteroge-
neous set of order lengths (small items). In the Clas-

sic Two-Dimensional Cutting Stock Problem

(Gilmore and Gomory, 1965), a weakly heteroge-
neous set of order rectangles has to be cut from
stock plates of a specific, single size (length and
width). In both problems, the number or the value
of the necessary large objects (stock lengths or stock
plates) has to be minimised.

Examples for a three-dimensional (rectangular)
problem of this type include the Multi-Pallet Load-

ing Problem (as discussed in Terno et al., 2000)
and the Multi-Container Loading Problem (Scheit-
hauer, 1999), in which a weakly heterogeneous
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assortment of cargo (i.e. a set of boxes) is to be
packed on a minimum number of pallets or into a
minimum number of containers (also see Bortfeldt,
2000).

7.10. Multiple Stock-Size Cutting Stock Problem

Problems of this kind include the natural exten-
sions of the one-dimensional and two-dimensional
cutting stock problems to more than one stock size
(see Gilmore and Gomory, 1961; Rao, 1976; Dyck-
hoff, 1981; Scheithauer, 1991; Belov and Scheit-
hauer, 2002 for the one-dimensional and Riehme
et al., 1996; Morabito and Arenales, 1996 for the
two-dimensional, rectangular case). The One-
Dimensional Multiple Stock-Size Cutting Stock
Problem has also been considered under the name
‘‘Paper Trim Problem’’ in the literature (Golden,
1976, p. 265f.). For a two-dimensional application
(i.e. a two-dimensional, rectangular MSSCSP)
from furniture manufacturing (see Carnieri et al.,
1994).

One of the container-loading problems discussed
in Eley 2003 represents a three-dimensional (rectan-
gular) case of this problem type. Both containers
and boxes can be grouped into classes. Associated
with each container type are specific costs, the total
costs of the containers necessary to accommodate
all boxes are to be minimised.

7.11. Residual Cutting Stock Problem

For a Cutting Stock Problem with a strongly het-
erogeneous assortment of large objects we have cho-
sen the name ‘‘Residual Cutting Stock Problem’’
here, because in practice this case comes about
whenever large objects are to be used which repre-
sent unused parts of input material (‘‘left-overs’’)
from previous C&P processes. Under the name of
‘‘Hybrid One-Dimensional Cutting Stock Problem’’
a one-dimensional case of this problem type has
been introduced in the literature (cf. Gradišar
et al., 2002, p. 1212; Gradišar et al., 1999). The
authors introduce a one-dimensional cutting prob-
lem, in which a weakly heterogeneous assortment
of order lengths has to be cut from a set of input
lengths which are all different. The supply of input
lengths is sufficient to satisfy the demands, and the
objective is to minimise the trim loss of the input
lengths which are to be used (also see Gradišar
et al., 1999, p. 559, case 1). They argue that tradi-
tional, pure item-oriented or pure pattern-oriented
solution approaches are not appropriate. Instead,
they suggest a new solution approach which is a
combination of both. The two-dimensional case is
considered in Vanderbeck, 2001. Extensions of
this problem type into three or even more dimen-
sions have not been discussed in the literature so
far.

7.12. Single Bin-Size Bin Packing Problem

The Classic (One-Dimensional) Bin Packing

Problem is a representative of this problem type. It
requires packing a given set of distinct small items
of given weights to a minimal number of large
objects (bins) of identical size (capacity) such that
for each bin the total capacity of the small items
does not exceed its capacity (cf. Martello and Toth,
1990; Scholl et al., 1997; Schwerin and Wäscher,
1997). We also note that this problem type has also
been named Vehicle Loading Problem (cf. Golden,
1976, p. 266) and Binary Cutting Stock Problem

(cf. Vance et al., 1994) in the literature. The k-Item

Bin Packing Problem (cf. Babel et al., 2004) addi-
tionally requires the assignment of at most k items
to each bin.

What is called the Two-Dimensional (Orthogo-

nal) Bin Packing Problem (Lodi et al., 1999,
2002b, p. 379; Lodi et al., 2002a, p. 242; Martello
and Vigo, 1998 also refer to this problem type as
the Two-Dimensional Finite Bin Packing Problem

in order to distinguish it from the Two-Dimensional

Strip Packing Problem, in which the large object has
an infinite extension in one dimension) consists of
assigning a set of distinct rectangles orthogonally
to a minimum number of rectangular bins. Accord-
ing to the suggested typology this is a two-dimen-
sional, rectangular SBSBPP type. George et al.
(1995, p. 693) mention the Cylindrical Bin Packing

Problem. This is a two-dimensional circular
SBSBPP, in which the large objects are rectangles
and the small items are circles. Real problems of this
kind arise in logistics when (a minimum number of)
containers are to be loaded with pipes.

In the Three-Dimensional (Orthogonal) Bin
Packing Problem the items are assumed to be rect-
angular boxes which are to be fitted orthogonally
into a minimal number of rectangular containers
of identical size (cf. Lodi et al., 2002c). The Cube

Packing Problem is a special case of the three-
dimensional rectangular Bin Packing Problem, in
which all boxes and bins are cubes (Miyazawa and
Wakabayashi, 2003).



Table 1
Number of problem-relevant dimensions and assignment types of
problems dealt with in the literature

Kind of assignment 1D 2D
regular

2D
irregular

3D Total

Input minimisation 108 79 52 24 263
Output maximisation 64 71 12 35 182
Total 172 150 64 59 445
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7.13. Multiple Bin-Size Bin Packing Problem

The (One-Dimensional) Variable-Sized Bin Pack-

ing Problem (Chu and La, 2001; Kos and Duhovnik,
2002) is an extension of the Classic One-Dimen-
sional Bin Packing Problem in which several bin
types are introduced (i.e. it is a one-dimensional
MBSBPP). Each bin type is in unlimited supply
and characterised by specific costs and size. All the
small items have to be assigned to bins, and the total
costs of the used bins have to be minimised (cf.
Kang and Park, 2003). A two-dimensional, rectan-
gular case is considered in Tarasova et al., 1997,
in which the large objects are in limited supply
and where the total area of the material necessary
to cut all small items is to be minimised.

7.14. Residual Bin Packing Problem

In analogy to the cutting stock problem, for this
problem type which is characterised by a set of
strongly heterogeneous large objects we have chosen
the name ‘‘Residual Bin Packing Problem’’.

Chen et al. (1995) consider a three-dimensional
container loading problem, in which a weakly heter-
ogeneous consignment of boxes has to be packed
into containers available in different sizes. In one
of the discussed situations, the available container
space is not sufficient to accommodate all boxes.
Therefore, a selection of boxes has to be determined
that maximises the volume utilisation, or, alterna-
tively, the value of the packed boxes (three-dimen-
sional, rectangular RBPP).

8. Categorisation of recent literature (1995–2004)

In order to demonstrate the practicability and
usefulness of the suggested typology, the recent
C&P literature has been reviewed and categorised
according to the scheme introduced above. We con-
centrated on papers which are publicly available
and have been published in English in international
journals, edited volumes, or conference proceedings
during the decade between 1995 and 2004. Mono-
graphs and working papers have not been consid-
ered in our investigation.

In order to exclude publications from the periph-
ery of C&P from our analysis, which are only of
marginal interest to researchers and practitioners
in the field, we restricted ourselves to papers related
to C&P problems ‘‘in a narrow sense’’ (Dyckhoff,
1990, p. 148) in the first place. Papers on ‘‘abstract’’
C&P problems (Dyckhoff, 1990, p. 148) have only
been considered as far as these problems (like those
of the knapsack type) have been introduced in the
suggested typology, i.e. we refrained from including
other papers from this category not addressing C&P
directly, like papers on flow-line balancing (Talbot
et al., 1986; Scholl, 1999), multi-processor schedul-
ing (Brucker, 2004, pp. 107–154; Bła _zewicz et al.,
2001, pp. 137–203), or capital budgeting (Lorie
and Savage, 1955).

Furthermore, only papers dealing with C&P
problems in the sense of refined problem types have
been included in our analysis. Articles dealing with
problem extensions and problem variants were not
taken into account for. We note again that we have
excluded papers of this kind only in order to keep
the number of papers to be considered to a manage-
able size and to find a definition of a paper cluster
that is of interest to researchers and practitioners
in the field of C&P. Focussing our investigation in
this particular way by no means limits the usefulness
and the value of the suggested typology. In fact, also
the problems discussed in papers which have been
excluded here can be categorised according to our
typology.

Finally we remark that only such papers have
been categorised which strictly satisfy the above-
given definition of C&P problems and subsequent
specifications. That means that papers, e.g. dealing
with divisable small items and/or large objects
(Kang and Park, 2003), or allowing the ‘‘overpack-
ing’’ of bins (Coffman and Lueker, 2001) do not
appear in our analysis.

As far as for December 2005, 413 papers have
been identified containing material relevant in the
above-described sense. These papers are listed at
http://www.uni-magdeburg.de/mansci/rm/cp_typo-
logy, together with the corresponding problem
types to which they have been assigned. Table 1
shows what problem types and number of dimen-
sions are dealt with in these papers. The total num-
bers given in this and the following tables is larger

http://www.uni-magdeburg.de/mansci/rm/cp_typology
http://www.uni-magdeburg.de/mansci/rm/cp_typology
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than 413 because in some papers more than one
problem type is addressed. Consequently, those
papers had to be counted more than once.

Research on input minimisation problems (dealt
with in 263 papers, 59%) clearly dominates research
on output maximisation problems (182 papers,
41%). One-dimensional and two-dimensional prob-
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lems (172 papers, 39%, and 214 papers, 48%) are
considered significantly more often than three-
dimensional ones (59 papers, 13%).

Figs. 12 and 13 give a more detailed analysis of
how the papers are distributed over the different
problem categories. Among research on output max-
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gle large object are prevailing (165 papers, 37% of all
papers and 91% of those belonging to the output-
maximisation type). With respect to input minimisa-
tion, most of the publications deal with problems in
which the assortment of large objects either consists
of identical large objects of a single given size (127
papers, 29% of all papers, and 48% of those belong-
ing to the input-minimisation type), or, alternatively,
of a single large object with one variable dimension
(102 papers, 23 and 39%).

As becomes further evident, published research
concentrates on five problem types, namely on the
ODP (102 papers, 23%), SBSBPP (89 papers,
20%), SKP (86 papers, 19%), SLOPP (56 papers,
13%) and the SSSCSP (38 papers, 9%). Papers on
these five problem types account for 371 out of
445 publications (83%). In Table 2 the numbers of
papers which consider these problem types are fur-
ther differentiated with respect to the number of
problem-relevant dimensions.

Table 2 reveals that research on C&P still is
rather traditionally oriented. It stresses areas which
include clearly-defined (‘‘classic’’) standard prob-
lems, well-studied for three decades or an even
longer period of time, such as the one-dimensional
SBSBPP (including the Classic Bin Packing Prob-
lem), the two-dimensional ODP (including the Reg-
ular and the Irregular Strip-Packing Problem), the
one-dimensional SSSCSP (including the Classic
Cutting Stock Problem), the one-dimensional SKP
(including the Classic Knapsack Problem), and the
two-dimensional SLOPP (including the Distribu-
tor’s Pallet Loading Problem). As far as research
departs from these traditional areas, it is devoted
to straightforward extensions of these standard
problems into a higher number of dimensions,
e.g., to the two-dimensional Bin Packing Problem,
the two-dimensional Knapsack Problem, etc. Other
kinds of problem extensions (e.g., considering differ-
Table 2
Number of papers on selected problem types, differentiated
according to the number of problem-relevant dimensions

Problem types 1D 2D
regular

2D
irregular

3D Total

ODP – 46 49 7 102
SBSBPP 61 17 2 9 89
SKP 49 18 7 12 86
SLOPP 4 32 1 19 56
SSSCSP 29 2 1 6 38
Other 29 35 4 6 74
Total 172 150 64 59 445
ent assortments of large objects and small items)
which are probably more relevant to the solution
of real-world C&P problems can only be found far
less commonly in the literature, even though a
few, more recent papers considering a heteroge-
neous assortment of large objects (51) seem to indi-
cate that the preferences of researchers might be
changing.

We finally note (cf. Fig. 12) that the IIPP which has
been extensively studied in the 1980s is only repre-
sented in 23 papers. This seems to indicate that the
central standard problem of this type, the classic
Manufacturer’s Pallet Loading Problem, has been
solved satisfactorily and that research has shifted to
more complex problem situations recently, taking
care, in particular, of a (weakly) heterogeneous
assortment of small items (boxes to be packed).
9. Outlook

The suggested typology should be sufficient for
an initial, brief orientation in a particular area of
C&P. To practitioners and researchers confronted
with particular C&P problems Fig. 2 points out
the relevant problem parameters, allowing them to
assign their problems to the relevant problem cate-
gories. An extensive database of C&P publications
(also including those concerning problem extensions
and problem variants), in which papers are classified
and organised in accordance with the suggested
typology, is available at the ESICUP webpage
(http://www.apdio.pt/sicup/). It provides direct
access to the literature of each specific problem type.

Fig. 2 also outlines the area of future work. In
order to structure the refined problem types further,
it will be necessary to compile, analyse and group
the respective additional constraints. Furthermore,
problem extensions and problem variants and the
corresponding standard problems have to be inves-
tigated in greater detail.
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reihenfolgeabhängigen Rüstzeiten. Deutscher Universitäts-
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Wäscher, G., Gau, T., 1996. Heuristics for the integer one-
dimensional cutting stock problem: A computational study.
OR Spektrum 18, 131–144.

Yanasse, H.H., 1997. On a pattern sequencing problem to
minimize the maximum number of open stacks. European
Journal of Operational Research 100, 454–463.

Yuen, B.J., 1995. Improved heuristics for sequencing cutting
patterns. European Journal of Operational Research 87, 57–
64.

Yuen, B.J., Richardson, K.V., 1995. Establishing the optimality
of sequencing heuristics for cutting stock problems. European
Journal of Operational Research 84, 590–598.


	An improved typology of cutting and packing problems
	Introduction
	Structure of cutting and packing problems
	Dyckhoff ' s typology
	Outline of the new typology and overview of problem categories
	(Modified) criteria for the definition of problem types
	Dimensionality
	Kind of assignment
	Assortment of small items
	Assortment of large objects
	Shape of small items

	Basic, intermediate and refined problem types
	Basic problem types
	Output maximisation types
	Input minimisation types

	Intermediate problem types
	Refined problem types

	Specific problem categories
	Identical Item Packing Problem
	Single Large Object Placement Problem
	Multiple Identical Large Object Placement Problem
	Multiple Heterogeneous Large ObjectPlacement Problem
	Single Knapsack Problem
	Multiple Identical Knapsack Problem
	Multiple Heterogeneous Knapsack Problem
	Open Dimension Problem
	Single Stock-Size Cutting Stock Problem
	Multiple Stock-Size Cutting Stock Problem
	Residual Cutting Stock Problem
	Single Bin-Size Bin Packing Problem
	Multiple Bin-Size Bin Packing Problem
	Residual Bin Packing Problem

	Categorisation of recent literature (1995-2004)
	Outlook
	Acknowledgements
	References


