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Abstract: The number of publications in the area of Cutting and Packing (C & P) has 
increased considerably over the last two decades. The typology of C & P problems 
introduced by Dyckhoff (1990) initially provided an excellent instrument for the 
organisation and categorisation of existing and new literature. However, over the 
years also some deficiencies of this typology became evident, which created 
problems in dealing with recent developments and prevented it from being accepted 
more generally. In this paper, the authors present an improved typology, which is 
partially based on Dyckhoff’s original ideas, but introduces new categorisation 
criteria, which define problem categories different from those of Dyckhoff. 
Furthermore, a new, consistent system of names is suggested for these problem 
categories. Finally, the practicability of the new scheme is demonstrated by using it 
as a basis for a categorisation of the C & P literature from the years between 1995 
and 2004. 
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1 Introduction 
 
A typology is a systematic organisation of objects into homogenous categories on the 
basis of a given set of characterising criteria. It is practically oriented and meant to 
deal with “important” real objects in the first place while hypothetical and/or “less 
important” real objects might be neglected. A typology resembles a classification, 
however, with respect to the above-mentioned focus, unlike the latter, it may not be 
complete (i. e. not all properties of a criterion may be considered explicitly), and it 
may be “fuzzy” (i. e. the categories may not always be defined precisely and properly 
distinguished from each other). 
 
A typology provides a concise view of “relevant”, “important” objects and, thus, 
prepares the ground for practically oriented research. Furthermore, it helps to unify 
definitions and notations and by doing so, facilitates communication between 
researchers in the field. Finally, if publications are categorised according to an 
existing typology, it will provide a faster access to the relevant literature. 
 
A typology of OR problems, in particular, provides the basis for a structural analysis 
of the underlying problem types, the identification and definition of standard 
problems, the development of models and algorithms, problem generators etc. For 
the area of cutting and packing (C & P), Dyckhoff (1990) has introduced such a 
typology, which, unfortunately, has not always found satisfactory international 
acceptance. Furthermore, almost fifteen years since its initial publication, it became 
obvious that Dyckhoff’s typology is insufficient with respect to the inclusion of current 
developments. Therefore, the authors decided to present a new, improved typology 
here, providing a consistent system of problem types which allows for a complete 
categorisation of all known C & P problems and the corresponding literature. 
Furthermore, it helps to identify “blank spots”, i.e. areas, in which none or only very 
little research has been done. Finally, the suggested typology is also open to new 
problem types to be introduced in the future. 
 
For the problem types included in the typology, a straightforward system of notations 
is introduced. Wherever possible, the problem categories are named in accordance 
with existing notations. By doing so, the authors do not only intend to avoid 
unnecessary misinterpretations, or even confusion, but also to improve the degree of 
acceptance among researchers in the field. The system of notations will also provide 
the basis for a system of abbreviations which can be used in a database of C & P 
literature for a simple but precise characterisation. The suggested abbreviations may 
also become part of a more complex coding scheme of C & P problems. 
 
The remaining part of this paper is organised as follows: In section 2, the general 
structure of C & P problems will be presented, not only because the typology to be 
introduced here addresses C & P problems, but also because the criteria for the 
definition of the respective problem categories are closely related to elements of this 
structure. In section 3, Dyckhoff’s typology will be discussed, and, in particular, some 
severe drawbacks are pointed out which necessitate the development of a new, 
improved typology. The new typology is outlined in section 4. In section 5, criteria 
and corresponding properties used in the new typology for the definition of problem 
types are introduced. As far as these criteria have also been used by Dyckhoff, they 
were complemented by additional, potentially important properties. Then (section 6), 
in a first step, two of the criteria, “type of assignment” and “assortment of small 
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objects”, are used to define basic problem types. The additional application of a third 
criterion, “assortment of large objects” leads to intermediate problem types. Finally, 
the application of the criteria “dimensionality” and “shape of small items” provides 
refined problem types. In section 7 it is demonstrated how well-known problems 
discussed in the literature fit into the suggested typology. Furthermore, its usefulness 
and practicability is demonstrated by categorising the literature on C & P problems 
from the last decade (1995-2004) accordingly. An analysis of recent trends in C & P 
research, based on the categorisation, is given in section 8. The paper concludes 
with an outlook on future work (section 9), which particularly sketches a potential, 
more refined scheme for the categorisation of (publications on) C & P problems. 
 
 
2 Structure of Cutting and Packing Problems 
 
Cutting and packing problems have an identical structure in common which can be 
summarised as follows: 
 

Given are two sets of elements, namely 
 

• a set of large objects (input, supply) and 
 

• a set of small items (output, demand), 
 
which are defined exhaustively in one, two, three or an even larger number (n) of 
geometric dimensions. Select some or all small items, group them into one or more 
subsets and assign each of the resulting subsets to one of the large objects such that 
the geometric condition holds, i. e. the small items of each subset have to be laid out 
on the corresponding large object such that 
 

• all small items of the subset lie entirely within the large object and 
 

• the small items do not overlap, 
 
and a given (single-dimensional or multi-dimensional) objective function is optimised. 
We note that a solution of the problem may result in using some or all large objects, 
and some or all small items, respectively. 
 
Formally, five sub-problems can be distinguished, which, of course, have to be 
solved simultaneously in order to achieve a “global” optimum: 
 

• selection problem regarding the large objects; 
 

• selection problem regarding the small items; 
 

• grouping problem regarding the selected small items; 
 

• allocation problem regarding the assignment of the subsets of the small items 
to the large objects; 

 

• layout problem regarding the arrangement of the small items on each of the 
selected large objects with respect to the geometric condition.  

 
Special (types of) C & P problems are characterised by additional properties. In 
particular, they may turn out to be degenerated in the sense that they do not include 
all of the above-mentioned sub-problems.  
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3 Dyckhoff’s Typology 
 
Fig. 1 summarises the main features of Dyckhoff’s typology. The author introduces 
four criteria (characteristics) according to which C & P problems are categorised.  
 

1. Dimensionality
(1) one-dimensional
(2) two-dimensional
(3) three-dimensional
(N) N-dimensional with N > 3

2. Kind of assignment
(B) all objects and a selection of items
(V) a selection of objects and all items

3. Assortment of large objects
(O) one object
(I) identical figure
(D) different figures

4. Assortment of small items
(F) few items (of different figures)
(M) many items of many different figures
(R) many items of relatively few different 

(non-congruent) figures
(C) congruent figures 

 
Fig. 1: Categorisation criteria, main types, and coding scheme of Dyckhoff’s typology 

(cf. Dyckhoff 1990, p. 154) 
 
Criterion 1, dimensionality, captures the minimal number (1, 2, 3, n > 3) of geometric 
dimensions which are necessary to describe the required layouts (patterns) 
completely. Regarding criterion 2, the kind of assignment of small items to large 
objects, Dyckhoff distinguishes two cases, indicated by B and V. B stands for the 
German “Beladeproblem”, meaning that all large objects have to be used. A selection 
of small items has to be assigned to the large objects. V (for the German 
“Verladeproblem”) characterises a situation in which all small items have to be 
assigned to a selection of large objects. Criterion 3 represents the assortment of the 
large objects. O stands for one large object, I for several but identical large objects, 
and D for several different large objects. Criterion 4 likewise characterises the 
assortment of the small items. Dyckhoff distinguishes assortments consisting of few 
items (F), many items of many different figures (M), many items of relatively few 
different figures (R), and congruent figures (C; we will be using the notion “shape” 
here, instead of “figure”). 
 
When it was initially published, Dyckhoff’s work represented a milestone in C & P 
research as it highlighted the common underlying structure of cutting problems on 
one hand and packing problems on the other. By doing so, it supported the 
integration and cross-fertilisation of two largely separated research areas. 
Unfortunately, on an international level his typology has not always been accepted as 
widely as was desirable, most probably due to the fact that the provided coding 
scheme was not self-explanatory from the view point of an international (English-
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speaking) community of researchers. This becomes particularly evident for the 
problem types B and V. 
Obviously, this deficiency could be overcome by introducing more appropriate 
(English) names for the respective problem categories / types. However, some 
drawbacks have to be taken more seriously, which became evident in the light of 
some recent developments in the field of C & P. 
 

• Not necessarily all C & P problems (in the narrow sense) can be assigned 
uniquely to problem types  
 
In Dyckhoff’s paper already, a well-known standard problem, the Vehicle 
Loading Problem, has been coded both as 1/V/I/F and 1/V/I/M (Dyckhoff 1990, 
p. 155). F characterises a situation in which few items of different shapes (i.e. 
items which are different with respect to shape, size and/or orientation) are to 
be assigned. M represents a situation with many items of many different 
shapes. Apart from the fact that it is definitely desirable to have only one 
option available for the assignment of a well-known standard problem like the 
Vehicle Loading Problem, it does not become clear how this differentiation will 
provide a set of problem categories which is more homogeneous (with respect 
to model building and the development of algorithms) than a single type, which 
includes both categories. (It is interesting to note that problem category F only 
appears once in Dyckhoff’s examples of combined types (1990, p. 155). One 
may take this as an additional indicator that this kind of differentiation might 
not prove very promising in the end.) 

 
• Dyckhoff’s typology is partially inconsistent; its application might have 

confusing results 
 
In the literature, a particular two-dimensional packing problem, the so called 
“Strip-Packing Problem”, namely the packing of a set of small items (often 
rectangles) of different sizes into a single rectangle with fixed width and 
minimal (variable) length (Jacobs 1996, Martello, Monaci & Vigo 2003), has 
attracted considerable attention. Most probably, this problem would be coded 
both by researchers and by practitioners as 2/V/O/M, while in Dyckhoff’s 
typology it has been assigned the notation 2/V/D/M. Dyckhoff justifies this 
notation – rather artificially from our point of view – by saying that this problem 
“… is equivalent to an assortment selection problem where the stock is given 
by an infinite number of objects of this width and of all possible lengths and 
where only one object has to be chosen from stock, namely that of minimal 
length” (1990, p. 155). What makes Dyckhoff’s characterisation of the problem 
even more confusing is the fact that he calls it a Two-Dimensional Bin Packing 
Problem (Dyckhoff 1990, p. 155). Not only in our understanding (also see 
Lodi, Martello & Monaci 2002, Miyazawa & Wakabayashi 2003, Faroe, 
Pisinger & Zachariasen 2003) it would have been more obvious to reserve this 
name for the natural extension of the Classic (One-Dimensional) Bin Packing 
Problem, i.e. the packing of a set of small items of different sizes into a 
minimum number of rectangles (large objects) of identical size. The notation 
becomes even more questionable for two-dimensional problems where both 
width and length are variables, and, likewise, for three-dimensional problems, 
where width, length and / or height are variables. We conclude that – in order 
to avoid confusion about the contents of problem notations and definitions – it 
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is advisable to distinguish problem types with respect to fixed and with respect 
to variable dimensions.  
 

• Application of Dyckhoff’s typology does not necessarily result in homogeneous 
problem categories 
 
Gradišar, Resinovič & Kljajić (2002) notice that in the case of one-dimensional 
cutting, where a large number of small items of relatively few different shapes 
has to be produced from standard material in unlimited supply, two situations 
should be distinguished if the standard material comes in different sizes. In the 
first situation, the large objects can be separated into to a few groups of 
identical size, while in the second situation all large objects are entirely 
different. In Dyckhoff’s coding scheme both situations would be included in the 
problem type 1/V/D/R. Gradišar, Resinovič & Kljajić (2002, p. 1208) now argue 
that the inclusion in the same problem category is not very useful because the 
two situations require different solution approaches, namely a pattern-oriented 
approach for cutting problems with few groups of identical large objects and 
an item-oriented approach for such problems with entirely different large 
objects. We just would like to add that the same can be observed for problems 
of higher dimensions and for packing problems, as well. Therefore, we 
conclude that, in order to develop categories of homogeneous problems, the 
properties (main types) of Dyckhoff’s third criterion, the assortment of large 
objects, should be further differentiated. 
 

The latter aspect turns out to represent the most severe limitation of Dyckhoff’s 
typology, as it generally questions whether one of the central goals of the introduction 
of a problem typology is achieved, namely to provide a homogeneous basis for the 
development of models and algorithms. 
 
 
4 Outline of the New Typology and Overview of Problem 

Categories 
 
Problem types can generally be defined as elementary types or combined types. 
Types which can be used as a basis for the development of models, algorithms, and 
problem generators, and for the categorisation of literature must be relatively 
homogeneous. Consequently, it is very likely that they must be introduced as 
combined types, which stem from the subsequent or simultaneous application of 
different categorisation criteria. Five criteria will be used here for the definition of 
combined problem types of C & P problems, namely “dimensionality”, “kind of 
assignment”, “assortment of large objects”, “assortment of small items”, and “shape 
of the small items”. 
 
It goes without saying that each typology of C & P problems should offer an option to 
characterise a given problem with respect to the number of problem-relevant 
dimensions. Consequently, this criterion will be adopted directly from Dyckhoff’s 
typology.  
 
Dyckhoff’s criterion “kind of assignment” has proven to be useful in distinguishing 
between different kinds of C & P problems in the past. Therefore, it will also be used 
here; however, in order to avoid the German notations “Verladeproblem” and 
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“Beladeproblem”, the authors will refer to the corresponding problem categories / 
elementary types – in a general sense - as “input minimisation” and “output 
maximisation”, respectively. 
 
On the other hand, in order to overcome the above-sketched limitations of Dyckhoff’s 
typology, the two criteria “assortment of large objects” and “assortment of small 
items” will be redefined and/or supplemented with new properties.  
 
Unlike in Dyckhoff’s typology, the two criteria “kind of assignment” and “assortment of 
small items” will not be taken for the definition of two different fields in a classification 
scheme for C & P problems. Instead, they will be used in combination in order to 
define basic problem types. These basic problem types (which already represent 
combined types in the sense of Dyckhoff; see Dyckhoff 1990, p. 154), provide the 
core objects for the introduction of a new, more widely accepted nomenclature. 
Existing names have been adopted as far as possible, in particular, wherever there 
was no or only a small probability that their use would result in misinterpretations of 
their contents. 
 
The subsequent application of the criterion “assortment of large objects” will provide 
intermediate problem types. Further characterisation with respect to the number of 
problem relevant dimensions (“dimensionality”) and - in the case of problems of two 
and more dimensions – with respect to the “shape of small items” will provide refined 
(combined) problem types. The name of each of these refined types consists of the 
name of the underlying intermediate type and one or two additional adjectives which 
indicate the respective properties. Refined problem types will be used for the 
categorisation of publications, here. 
 
An instance of a specific refined problem type will exhibit all the properties which 
have been used for the definition of the respective category and probably additional 
constraints and / or characteristics. A problem instance which only exhibits the 
defining properties, but no additional constraints or characteristics could be 
interpreted as being (an instance of) a (first-level) standard problem (type). First-
level, non-standard problems (problem types) are characterised by the properties 
defining the respective problem category and additional constraints and / or 
characteristics. Of course, in particular when considered in scientific research, they 
may represent well-known standard problems as well. In such case, in order to 
distinguish them from the previously mentioned ones, we would call them second-
level standard problems whenever necessary. The identification of standard 
problems (types) represents a major goal of our typology. These problem types 
provide the basis of scientific research, in particular for the development of (standard) 
models, algorithms, and problem generators. 
 
Fig. 2 gives an overview of the previously introduced types and their relationships. In 
this paper, we concentrate on “pure” C & P problem types in the above-defined 
sense (see section 2), i.e. problems in which the solution consists of information on 
the set of patterns according to which the (selected) small items have to be cut from / 
packed into (a subset of) the large objects and the corresponding objective function 
value. The inclusion of additional aspects which extend the view of the planning 
problem beyond the core of cutting or packing will give rise to an extended problem 
type or a problem extension.  
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Apart from information on the patterns, a solution to a problem of this kind includes 
additional information on other problem-relevant aspects such as the number of 
different patterns (as in the pattern minimisation problem; cf.  Vanderbeck 2000), 
processing sequences (as in the pattern sequencing problem; cf. Foerster & 
Wäscher 1998, Yanasse 1997, Yuen 1995, Yuen & Richardson 1995) or lot-sizes (cf. 
Nonås & Thorstenson 2000). We would like to point out, however, that the “C & P-
related part” of problems of this type can be categorised  in the same way as “pure” 
problems. 
 
When defining basic, intermediate and refined problem types, it will be necessary to 
introduce certain assumptions. Some of these assumptions are related to general 
properties of the problem and restrict the view to single-objective, single-period and 
deterministic problems. Replacing the assumptions by different ones, leads to 
problem types which will be considered as problem (type) variants, here. Problems 
with multiple objectives (cf. Wäscher 1990), stochastic problems (in which, e.g., the 
sizes of the large objects are random variables; cf. Das & Ghosh 2003), fuzzy 
problems (where the costs of the large objects are fuzzy coefficients; cf. Katagiri, Ishii 
& Sakawa 2004), or on-line problems (in which, e.g., parcels arrive one after another 
at a packing station and a decision has to be made immediately on their arrival where 
they should be packed into a container; cf. Hemminki, Leipälä & Nevalainen 1998, 
Abdou & Elmarsry 1999) belong to this category. A second class of assumptions also 
leading to problem variants arises from C & P-specific aspects. They will be 
explained in greater detail later.  
 
 
5 (Modified) Criteria for the Definition of Problem Types 
 
5.1 Dimensionality 
 
We distinguish between one-, two-, and three-dimensional problems. In the 
literature, occasionally, also problems with more than three geometric dimensions  
are considered (e.g. Lins, Lins & Morabito 2002). Problems of this type (n > 3) are 
looked upon as variants, here. 
 
 
5.2 Kind of Assignment 
 
Again, as in Dyckhoff (1990), we introduce two basic situations, of which we prefer to 
speak of output (value) maximisation and input (value) minimisation, 
respectively. 
 

• output (value) maximisation 
 

In the case of output (value) maximisation, a set of small items has to be 
assigned to a given set of large objects. The set of large objects is not 
sufficient to accommodate all the small items. All large objects are to be used 
(in other words: there is no selection problem regarding the large objects), to 
which a selection (a subset) of the small items of maximal value has to be 
assigned.  
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• input (value) minimisation 
 

Again, a given set of small items is to be assigned to a set of large objects. 
Unlike before, in the case of input (value) minimisation the set of large objects 
is sufficient to accommodate all small items. All small items are to be assigned 
to a selection (a subset) of the large object(s) of minimal “value”. There is no 
selection problem regarding the small items. 

 
Here, “output (value) maximisation” and “input (value) minimisation” are used in a 
general, non-specific manner. When treating specific problems, the “value” of objects 
/ items has to be defined more precisely and may be represented by costs, revenues, 
or material quantities. Often, the value of the objects / items can be assumed to be 
directly proportional to their size such that the objective function considers length 
(one-dimensional problems), area (two-dimensional problems), or volume (three-
dimensional problems) maximisation (output) or minimisation (input). In such cases, it 
might also be possible to translate both “output (value) maximisation” and “input 
(value) minimisation” into “waste minimisation”, i.e. the minimisation of the total size 
of unused parts of the (selected) large objects. In the environment of cutting 
problems often the term “trim-loss minimisation” is used.  
 
We would also like to point out  that - in order to define basic problem types – only 
these two situations will be considered here. Of course, problems encountered in 
practice and / or discussed in the literature may be characterised by the fact that a 
selection problem exists with respect to both large objects and small items. This 
requires an extended objective function which combines revenues and costs (“profit 
maximisation”). Also situations exist in which more than one objective function may 
have to be taken into account. Again, problems of this type will be considered as 
problem variants here.  
 
 
5.3 Assortment of Small Items 
 
With respect to the assortment of the small items we distinguish three cases, namely 
identical small items, a weakly heterogeneous assortment of small items, and a 
strongly heterogeneous assortment of small items (cf. Fig. 3): 
 

• identical small items 
 

Regarding their problem-relevant dimensions (i.e. their extension in the 
problem-relevant number of dimensions “length”, “width”, and “height”), all 
items are of the same shape and size. In the output maximisation case, it can 
be assumed that the (single) item type has an unlimited demand. This problem 
category is identical with Dyckhoff’s elementary type C (“congruent shapes”; 
cf. Dyckhoff 1990, p. 154). 
 

• weakly heterogeneous assortment 
 
The small items can be grouped into relatively few classes (in relation to the 
total number of items), for which the items are identical with respect to shape 
and size. By definition, small items of identical shape and size which require 
different orientations are treated as different kinds of items. The demand of 
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each item type is relatively large, and may or may not be limited by an upper 
bound. This category corresponds to Dyckhoff’s elementary type R (“many 
items of relatively few different (non-congruent) shapes”; cf. Dyckhoff 1990, 
p. 154). 
 

• strongly heterogeneous assortment 
  

The set of small items is characterised by the fact that only very few elements 
are of identical shape and size. If that occurs, the items are treated as 
individual elements. Consequently, the demand of each item is equal to one. 
This category includes Dyckhoff’s elementary types M (“many items of many 
different shapes”) and F (“few items (of different shapes)”; cf. Dyckhoff 1990, 
p. 154). 

 

identical small items

weakly heterogeneous assortment

strongly heterogeneous assortment

Assortment of Small Items

 
Fig. 3: Cases to be distinguished with regard to the assortment of small items 

 
For the definition of standard problems we assume that the set of small items is 
uniformly structured, i.e. that it does not contain items with large demands and others 
with small demands. A problem with strongly varying demands (cf. Riehme, 
Scheithauer, Terno 1996) will be considered as a variant, here. 
 
 
5.4 Assortment of Large Objects 
 
With respect to the assortment of the large objects we introduce the following cases 
(cf. Fig. 4): 
 

• one large object 
 
In this case the set of large objects consists of a single element. The extension 
of the large object may be fixed in all problem-relevant dimensions (“all 
dimensions fixed”), or its extension may be variable in one or more 
dimensions (“one or more variable dimensions”). The first category is 
identical with Dyckhoff’s type O, while the second category represents an 
extension of Dyckhoff’s set of elementary types (cf. Dyckhoff 1990, p. 154). 
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• several large objects 
 
With respect to the kind of problems which are described in the literature, in 
the case of several large objects it does not appear necessary to distinguish 
between fixed and variable dimensions; only fixed dimensions will be 
considered. In analogy to the categories which have been introduced for the 
assortment of the small items, we distinguish between identical large 
objects, a weakly and a strongly heterogeneous assortment of large 
objects. By doing so, we again extend Dyckhoff’s typology, who only identifies 
large objects with identical (type I) and different shapes (type D). 
 

For the definition of basic problem types we assume that - in the two- and three-
dimensional case - all large objects are of rectangular shape (rectangles, cuboids) 
and consist of homogeneous material. Non-rectangular large objects (e.g. circular 
objects such as discs) and / or non-homogeneous large objects (e.g. stock material 
including defects) give rise to problem variants, again. 
 

one large object

all dimensions fixed

one or more variable dimensions

several large objects (all dimensions fixed)

identical large objects

weakly heterogeneous assortment

strongly heterogeneous assortment

Assortment of Large Objects

 
Fig. 4: Cases to be distinguished with regard to the assortment of large objects 

 
 
5.5 Shape of Small Items 
 
In the case of two- and three-dimensional problems, for the definition of refined 
problem types we further distinguish between regular small items (rectangles, 
circles, boxes, cylinders, balls, etc) and irregular (also called: non-regular) ones. In 
the two-dimensional case, the former are sometimes further distinguished into 
rectangular items, circular items, and others.  
 
In accordance with what is usually considered in the literature, we assume that 
rectangular items are to be laid out orthogonally. Furthermore, the set of small items 
either consists of regular or irregular elements. Problems which allow for non-
orthogonal layouts and / or mixes of regular and irregular small items will be looked 
upon as problem variants again.  
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6 Basic, Intermediate and Refined Problem Types 
 
6.1 Basic Problem Types 
 
Basic types of C & P problems are developed by combination of the two criteria “type 
of assignment” and “assortment of small items”. Fig. 5 depicts the relevant 
combinations and the corresponding basic problem types. 
 
In the following sections these problem types will be characterised in greater detail.  
 
 
6.1.1 Output Maximisation Types 
 
Problems of the output maximisation type have in common that the large objects are 
only supplied in limited quantities which do not allow for accommodating all small 
items. As the value of the accommodated items has to be maximised, all large 
objects will be used. In other words, generally there is a selection problem regarding 
the small items, but none regarding the large objects. 
 
According to Fig. 5, we distinguish the following (basic, output maximisation) problem 
types: 
 

• Identical Item Packing Problem 
 

This problem category consists of the assignment of the largest possible 
number of identical small items to a given, limited set of large objects. We note 
that, due to the fact that all the small items are identical, there is in fact no real 
selection problem regarding the small items, and, furthermore, neither a 
grouping nor an allocation problem occurs. In other words, the general 
structure of C & P problems (cf. sec. 2) is reduced to a layout problem 
regarding the arrangement of the (identical) small items on each of the large 
objects with respect to the geometric condition.  

 
• Placement Problem 
 

In the literature, problems of this category are known under many different 
names. In order to avoid additional confusion, here we have introduced a 
somewhat more neutral notion. Here, the term “Placement Problem” defines a 
problem category in which a weakly heterogeneous assortment of small items 
has to be assigned to a given, limited set of large objects. The value or the 
total size (as an auxiliary objective) of the accommodated small objects has to 
be maximised, or, alternatively, the corresponding waste has to be minimised.  

 
• Knapsack Problem 

 
According to our interpretation, the Knapsack Problem represents a problem 
category which is characterised by a strongly heterogeneous assortment of 
small items which have to be allocated to a given set of large objects. Again, 
the availability of the large objects is limited such that not all small items can 
be accommodated. The value of the accommodated items is to be maximised.  
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6.1.2 Input Minimisation Types 
 
Problems of the input minimisation type are characterised by the fact that the supply 
of the large objects is large enough to accommodate all small items. Their demands 
have to be satisfied completely, so that no selection problem regarding the small 
items exists. The value of the large objects necessary to accommodate all small 
items has to be minimised. 
 

• Open Dimension Problem 
 

The Open Dimension Problem defines a problem category in which the set of 
small items has to be accommodated completely by one large object or 
several large objects. The large objects are given, but their extension in at 
least one dimension can be considered as a variable. In other words, this 
problem involves a decision on fixing the extension(s) in the variable 
dimension(s) of the large objects. Only the part(s) of the large object(s) 
necessary to accommodate the items completely represents input within the 
meaning of the general structure of C & P problems (cf. section 2). The value 
of the input (or a corresponding auxiliary measure like length, size, or volume) 
is to be minimised. Obviously, problems of this type are only possible in two 
and more dimensions. For the definition of basic problem types we restrict 
ourselves to large objects which – before and after having fixed their 
extension(s) in the variable dimension(s) – are rectangles (two-dimensional 
problems) or cuboids (three-dimensional problems). By doing so, in particular 
those problems are excluded from our analysis in which the small items have 
to be enclosed in non-rectangular large objects of minimal size (e.g. when 
circles have to be packed into another circle of minimal radius; cf. Birgin, 
Martinez & Ronconi 2005, pp. 27 ff.), or in which the density of the packing 
has to be maximised (e.g. as in the case of two-dimensional lattice packing; cf. 
Stoyan & Patsuk 2000). 

 
• Cutting Stock Problem 
 

Problems of this category require that a weakly heterogeneous assortment of 
small items is completely allocated to a selection of large objects of minimal 
value, number, or total size. The extension of the large objects is fixed in all 
dimensions. We point out that we do not make any assumptions on the 
assortment of the large objects. It may consist of identical objects, but it could 
also be a weakly or strongly heterogeneous assortment. 

 
• Bin Packing Problem 

 
In contrast to the previously described problem category, this one is 
characterised by a strongly heterogeneous assortment of small items. Again, 
the items have to be assigned to a set of identical large objects, a weakly 
heterogeneous or strongly heterogeneous assortment of large objects. The 
value, number, or total size of the necessary large objects (or another 
corresponding auxiliary objective) has to be minimised. 
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6.2 Intermediate Problem Types 
 
In order to define more homogeneous problem types the above-developed basic 
problem types are structured further into intermediate problem types. This is 
achieved by taking into account the assortment of the large objects as an additional 
differentiating criterion. Fig. 6 and Fig. 7 depict the intermediate problem types 
related to output maximisation, Fig. 8 and Fig. 9 the intermediate types related to 
input minimisation. Fig. 6 –9 also present our suggestions for naming these types.  
 
We note at this stage that – due to its simple problem structure – it is not necessary 
to further differentiate the Identical Item Packing Problem. In order to solve a problem 
of this type, it can be split into a set of independent sub-problems where each sub-
problem is related to a particular large object (or a particular type of large objects, if 
the large objects are at least partially identical) to which the largest possible number 
of small items has to be assigned. Consequently, in this typology the name Identical 
Item Packing Problem will also be reserved for a (combined) problem type in which 
the largest possible number of identical small items has to be assigned to a single 
given large object. Furthermore, with respect to the fact that the existing literature on 
the Open Dimension Problem concentrates on a very limited number of standard 
problems, we also refrained from structuring this basic problem type in greater detail 
at this stage. 
 
Figs. 10 and 11 summarise the system of intermediate problem types which has 
been introduced here. They can be interpreted as the “landscape” of C & P problems. 
Also, for each intermediate problem type, an abbreviation derived from the 
corresponding name is given which allows for a unique identification of each type. 

 
 
 

one large object   ⇒ Single Large Object
Placement Problem

several large objects

identical large objects ⇒ (Multiple) Identical
Large Object 
Placement Problem

heterogeneous assortment ⇒ (Multiple)
Heterogeneous 
Large Object
Placement Problem

Placement Problem

 
Fig. 6: Intermediate types of the Placement Problem 
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one large object   ⇒ Single
Knapsack Problem

several large objects

identical large objects ⇒ (Multiple) Identical 
Knapsack Problem

heterogeneous assortment ⇒ (Multiple) Heterogeneous 
Knapsack Problem

Knapsack Problem

 
Fig. 7: Intermediate types of the Knapsack Problem 

 
 

identical large objects ⇒ Single Stock Size
Cutting Stock
Problem

weakly heterogeneous  ⇒ Multiple Stock Size
assortment of large objects Cutting Stock 

Problem

strongly heterogeneous  ⇒ Residual
assortment of large objects Cutting Stock 

Problem

Cutting Stock Problem

 
Fig. 8: Intermediate types of the Cutting Stock Problem 
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identical large objects ⇒ Single Bin Size
Bin Packing 
Problem

weakly heterogeneous  ⇒ Multiple Bin Size
assortment of large objects Bin Packing 

Problem

strongly heterogeneous  ⇒ Residual
assortment of large objects Bin Packing 

Problem

Bin Packing Type

 
Fig. 9: Intermediate types of the Bin Packing Problem 

 

 
 

                           assortment 
                           of the small 
                           items 
characteristics 
of the large 
objects 

identical 
 

weakly 
heterogeneous 

 

strongly 
heterogeneous 

 

 
one 

large object 
 
 
 

 
Identical Item  

Packing Problem 
 
 

IIPP 

Single  
Large Object  
Placement 
Problem 

 
SLOPP 

 
Single  

Knapsack Problem
 
 

SKP 

 
identical 

 
 
 

Multiple Identical 
Large Object 
Placement 
Problem 

 
MILOPP 

 
Multiple Identical 

Knapsack Problem
 
 

MIKP 

all 
dimensions 

fixed 

 
 

heterogeneous 
 
 
 

 Multiple 
Heterogeneous 

Large Object 
Placement 
Problem 

 
MHLOPP 

 
Multiple 

Heterogeneous 
Knapsack Problem

 
 

MHKP 

Fig. 10: Landscape of intermediate problem types: output maximisation 
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                            assortment 
                            of small 
                            items 
characteristics 
of large 
objects 

weakly heterogeneous 
 

strongly 
heterogeneous 

 

 
identical 

 
 

Single Stock Size  
Cutting Stock Problem 

 
SSSCSP 

Single Bin Size 
 Bin Packing Problem 

 
SBSBPP 

 
 

weakly 
heterogeneous 

 
 

Multiple Stock Size  
Cutting Stock Problem 

 
MSSCSP 

Multiple Bin Size  
Bin Packing Problem 

 
MBSBPP 

all 
dimensions 

fixed 

 
strongly 

heterogeneous 
 
 

Residual  
Cutting StockProblem 

 
RCSP 

Residual  
Bin PackingProblem 

 
RBPP 

 
one large object 

 
variable dimension(s) 

 

Open Dimension Problem 
 

ODP 

Fig. 11: Landscape of intermediate problem types: input minimisation 
 

 
6.3 Refined Problem Types 
 
In a final step, refined problem types are obtained by application of the criterion 
“dimensionality”  and – for two- and three-dimensional problems – of the criterion 
“shape of the small items”.  The resulting subcategories are characterised by 
adjectives which are added to (the names of) the intermediate problem types (IPT) 
according to the following system: 
 

{1, 2, 3}-dimensional {rectangular, circular, …, irregular} {IPT} . 
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7 Specific Problem Categories 
 
In order to make the consequences of the suggested typology clearer, we will now 
explain the different categories in further detail by giving examples of specific cutting 
and packing problems (described in the literature) which belong to the problem types 
introduced above. In particular, well-known standard problems will be pointed out as 
representatives of the respective categories. 
 
 
7.1 Identical Item Packing Problem 
 
A well-known (regular / rectangular) representative of this problem type is the 
(Classic) Manufacturer’s Pallet Loading (Packing) Problem (MPLP; Dowsland 
1987, Morabito & Morales 1998), in which a single pallet has to be loaded with a 
maximal number of identical boxes (the problem itself – without this particular name – 
has been described even earlier in the literature, see, e.g., Steudel 1979, Smith & 
deCani 1980). It is usually assumed that the boxes are loaded in layers, in which all 
boxes have the same vertical orientation. By means of this assumption, the problem 
is actually reduced to a two-dimensional one (cf. Bischoff & Ratcliff 1995, p. 1322; 
also see Dyckhoff’s (1990, p. 155) characterisation of the problem as being of type 
2/B/O/C), namely to the problem of assigning a maximal number of small identical 
rectangles (representing the “bottom” surfaces of the boxes) to a given large 
rectangle (representing the pallet). In other words: The MPLP is a two-dimensional, 
rectangular Identical Item Packing Problem (IIPP). The Cylinder Packing Problem 
(Correia, Oliveira & Ferreira 2000, 2001, Birgin, Martinez & Ronconi 2005) 
possesses an almost identical problem structure, in which – instead of identical 
rectangles – a maximal number of non-overlapping circles of the same size has to be 
assigned to a given rectangle (two-dimensional, circular IIPP; also see Isermann 
1991). Among others, it can be found in the production of cans where the circles 
represent the lids and bottoms of (cylindrical) cans to be cut from tin plates, or in 
logistics management, where cylindrical cans have to be packed on a pallet. 
 
The Single-Box-Type Container Packing Problem (as discussed in George 1992) 
is an example of a three-dimensional special case of the Rectangular (i.e. regular) 
IIPP. It requires the loading of a single container (large object) with a maximum 
number of identical boxes (small items). 
 
 
7.2 Single Large Object Placement Problem  
 
The Bounded Knapsack Problem and the Unbounded Knapsack Problem (as 
described in Martello & Toth 1990, pp. 82-91, and pp. 91-103, respectively) are one-
dimensional representatives of the SLOPP type. Both require that a (single) 
knapsack (large object) of given limited weight capacity has to be packed with a 
selection (subset) from a given set of small items of given weights and values, such 
that the value of the packed items is maximised. The assortment of the small items is 
weakly heterogeneous, only relatively few different item types can be identified. The 
number of times an item of a particular type can be packed may be limited (bounded 
problem), or unlimited (unbounded problem). 
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Haims & Freeman (1970) introduce a two-dimensional problem of the SLOPP type 
which they name Template-Layout Problem. According to their general definition, a 
weakly heterogeneous set of regular or non-regular small items (“forms”) has to be 
cut from a single large rectangle such that the value of the cut items is maximised. In 
the subsequent discussion, the authors concentrate on rectangular small items (i.e. 
the discussed problem is of the two-dimensional, rectangular SLOPP type). In 
Christofides & Whitlock 1977, Beasley 1985a, or Christofides & Hadjiconstantinou 
1995, e.g., the authors also restrict themselves to rectangular small items. They call it 
the Two-Dimensional Cutting Problem (more precisely, we would rather call it the 
two-dimensional, rectangular SLOPP). The number of times an item of a particular 
type can be cut from the large rectangle may be constrained explicitly by an upper 
bound (as in Christofides & Whitlock 1977, Wang 1983, Beasley 1985b, Christofides 
& Hadjiconstantinou 1995, Beasley 2004). In Scheithauer & Sommerweiß (1998) the 
unbounded version of this problem (also see Herz 1972; Beasley 1985c) is discussed 
under the name Rectangle Packing Problem. In the (Constrained) Circular 
Cutting Problem (Hifi & M’Hallah 2004; according to the suggested typology, the 
problem would be characterised as a two-dimensional, circular SLOPP), a 
rectangular plate (large object) of given size has to be cut down into circular items, 
which are of m different types (radii). The number of small items which may be cut is 
bounded, and the objective is to minimise the unused space of the plate. 
 
What has been called the Single Container Loading (Packing) Problem in the 
literature (George & Robinson 1980, Bortfeldt, Gehring & Mack 2003) is an example 
of the three-dimensional, rectangular SLOPP. It requires loading a fairly large, weakly 
heterogeneous consignment of boxes into a given container such that the volume or 
value of the packed boxes is maximised, or, equivalently, the unused space of the 
container or the value of the unpacked boxes is minimised (also see Ratcliff & 
Bischoff 1998, Bortfeldt & Gehring 1998). A set of weakly heterogeneous cargo has 
to be packed on a pallet in the Distributor’s (Single) Pallet Loading Problem 
(Hodgson 1982, Bischoff, Janetz & Ratcliff 1995). Unlike the Manufacturer’s Pallet 
Loading Problem, this is a truly three-dimensional rectangular problem, as – due to 
the different box sizes – it may not be sufficient to concentrate on layered packing if 
the space available above the pallet is to be used in the best possible way. In real-
world Single Container and Pallet Loading Problems the number of boxes which are 
to be packed of a particular box type will be limited by an upper bound. Hifi (2004), 
on the other hand, considers the unconstrained case. 
 
 
7.3 Multiple Identical Large Object Placement Problem 
 
Straightforward extensions of the Single Large Object Placement Problem could take 
into account multiple identical large objects. This could give rise, e.g., to the 
(Bounded) Multiple Knapsack Problem, the Multiple Stock Sheet Cutting Problem etc. 
Problems of this type (MILOPP), however, have not yet been discussed in the 
literature, at least not to the knowledge of the authors of this paper. 
 
 
7.4 Multiple Heterogeneous Large Object Placement Problem 
 
Another extension of the Single Large Object Placement Problem which takes into 
account multiple, non-identical large objects also appears to having been treated 
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very rarely in the literature. A one-dimensional cutting problem is described in 
Gradišar et al. (1999, p. 559, case 2), in which a weakly heterogeneous assortment 
of order lengths has to be cut from a set of input lengths which are all different (one-
dimensional MHLOPP). The supply of input lengths is not sufficient to satisfy all 
orders. Therefore, the objective is to minimise the total size of the uncut order 
lengths. 
 
Eley (2003) considers three-dimensional container loading problems, in which a 
weakly heterogeneous consignment of boxes has to be packed into containers 
available in different sizes. In one of the discussed situations, the available container 
space is not sufficient to accommodate all boxes. Therefore, a selection of boxes has 
to be determined that maximises the volume utilisation, or, alternatively, the value of 
the packed boxes (three-dimensional, rectangular MHLOPP) . An exact algorithm for 
the unconstrained version of this problem is introduced in Hifi (2004). 
 
 
7.5 Single Knapsack Problem 
 
The Classic (One-Dimensional) Knapsack Problem, also called 0-1-Knapsack 
Problem (Martello, Pisinger & Toth 2000, Martello & Toth 1990, p. 13) which requires 
packing a given set of (different) items of given weights and values into a (single) 
knapsack of given limited weight capacity such that the value of the packed items is 
maximised (cf. Martello & Toth 1990, pp. 3, 13-77) obviously is a special case of this 
problem type (i.e. the one-dimensional SKP). The Subset-Sum Problem (cf. Martello 
& Toth 1990, pp. 105ff.)  is a 0-1-Knapsack Problem in which the weight of an item is 
identical with its value. A straightforward extension of this problem, namely the 
Multiconstraint (Zero-One) Knapsack Problem (Gavish & Pirkul 1985, Drexl 1988, 
Thiel & Voss 1994, the problem is also called m-Constraint Knapsack Problem, cf. 
Schilling 1990), also belongs to this category. Apart from the capacity constraint, m-1 
additional constraints have to be satisfied by the packed items. 
 
Extensions of the Classic (One-Dimensional) Knapsack Problem into two and more 
geometric dimensions give rise to the Two-Dimensional (Single Orthogonal) 
Knapsack Problem (Caprara & Monaci 2004; also see e.g. Healy & Moll 1996), in 
which a set of small, distinct rectangles has to be cut from a single large rectangle 
(two-dimensional, rectangular SKP), and the Three-Dimensional (Single 
Orthogonal) Knapsack Problem (also called Knapsack Container Loading 
Problem; cf. Pisinger 2002), in which rectangular-shaped boxes have to be packed 
into a container (three-dimensional, rectangular SKP; also see Bischoff & Marriott 
1990, Scheithauer 1999, Bortfeldt & Gehring 2001). In both cases usually the value 
of the cut / packed small items is to be maximised. If their value can be assumed to 
be proportional to their size / volume, then equivalently the unused space of the large 
rectangle or the container can be minimised. Fekete & Schepers (1997) finally looks 
at the n-Dimensional (Single Orthogonal) Knapsack Problem, which extends the 
Classic Knapsack Problem into n geometric dimensions. 
 
George, George & Lamar (1995) describe a two-dimensional, circular SKP, in which 
(the bottom of) a container (rectangle) has to be filled with a set of distinct pipes 
(circles) such that the value of the selected pipes is maximised.  
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7.6 Multiple Identical Knapsack Problem 
 
In the literature, a specific one-dimensional case of the Multiple Identical Knapsack 
Problem is known as the Maximum Cardinality Bin Packing Problem, in which a 
fixed number of large objects with a given, identical capacity and a (strongly 
heterogeneous) set of small, indivisible items of given weights are given. The 
objective is to maximise the number of packed items (Labbé, Laporte & Martello 
2003). 
 
The Multiple Container Packing Problem (as described in Raidl & Kodydek 2003) 
is a three-dimensional (regular) special case of this problem category, in which a 
given number of identical containers has to be filled with a (strongly heterogeneous) 
set of items of given weights and values. The total value of the packed items has to 
be maximised (three-dimensional, rectangular SKP). According to the authors’ 
knowledge, this is the only representative of this problem type discussed in the 
literature so far. 
 
 
7.7 Multiple Heterogeneous Knapsack Problem 
 
Martello & Toth (1990, pp. 157-187, also see Pisinger 1999) consider the 0-1 
Multiple Knapsack Problem, which is a one-dimensional representative of this 
problem type (i.e. a one-dimensional MHKP). A strongly heterogeneous set of small 
items, each of which is characterised by a specific weight and profit, has to be 
packed into a set of knapsacks of distinct capacities. For each knapsack, the packed 
items must not exceed the available capacity, and the total profit of the small items 
which are packed has to be maximised. 
 
 
7.8 Open Dimension Problem 
 
In the literature, Open Dimension Problems are usually discussed for a single large 
object. Obviously, problems of this kind are only possible in two and more 
dimensions. 
 
The (Two-Dimensional) Strip Packing Problem is an Open Dimension Problem in 
which a set of two-dimensional small items has to be laid out on a rectangular large 
object; the width of the large object is fixed, its length is variable and has to be 
minimised. In case the small items are rectangles (cf. Kröger 1995, Jacobs 1996, 
Hopper & Turton 2001a, Martello, Monaci & Vigo 2003) one may also refer to this 
problem as the Rectangular Strip Packing Problem, or even as the Orthogonal 
Rectangular Strip Packing Problem, if the small rectangles have to be laid out on 
the large object orthogonally. If the rectangles have to be packed “in levels”, this 
problem is also called Level Packing Problem (cf. Lodi, Martello & Vigo 2004). 
 
In case the small items are non-regularly shaped objects (Oliveira & Ferreira 1993, 
Bennell & Dowsland 2001), like in the shoe-manufacturing industry, where they may 
represent pieces of shoes to be cut from a roll of leather, the problem (i.e. in case of 
the two-dimensional, irregular ODP, according to the notation introduced here) is also 
referred to as the Irregular Strip Packing Problem (Hopper & Turton 2001b, p. 257) 
or the Nesting Problem (cf. Oliveira & Ferreira 1993, Oliveira, Gomes & Ferreira 
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2000, Carravilla, Ribeiro & Oliveira 2003). With respect to applications in specific 
areas, the same problem may also be known under different names (e.g. as the 
Marker-Making Problem in the apparel industry; cf. Li & Milenkovic 1995). 
 
A three-dimensional, rectangular Open Dimension Problem with a single variable 
dimension (length) occurs in distribution planning, when a given set of cargo (small 
items) has to be fitted into a container in such a way that the least space in terms of 
container length is used (Scheithauer 1991, Miyazawa & Wakabayashi 1997). 
 
In the Minimal Enclosure Problem (Milenkovic & Daniels 1999), also called 
Rectangular Packing Problem (Hifi & Ouafi 1998), a set of two-dimensional items 
has to be laid out such that it can be included in a rectangular (large) object of 
minimal area. In this case, the extension of the large objects in both dimensions 
(width and length) is variable. The small items may be of rectangular (cf. Hifi & Ouafi 
1998), circular (Stoyan & Yaskov 1998), or irregular shape (Milenkovic & Daniels 
1999). 
 
At least to our knowledge, Open Dimension Problems with more than one large 
object have not been discussed frequently in the area of C & P. Benati (1997) 
discusses a two-dimensional problem with several large objects of different widths 
which all have an infinite length. However, we would like to point out that the well-
studied (Classic) Multiprocessor Scheduling Problem could be interpreted as a 
one-dimensional problem of this kind. In this problem, a given set of indivisible jobs 
(small items) with given processing times (length) has to be allocated to a given 
number of identical processors (large objects) such that the maximal completion time 
(also called “schedule length”) is minimised (cf. Heuer 2004; Brucker 2004, pp. 107-
154; Błażewicz et al. 2001, pp. 137-203). The completion time of a processor is the 
time necessary to process all the jobs which have been assigned to this processor. In 
other words, an identical, minimal time-capacity (extension in the variable dimension) 
has to be assigned to each of the processors that is large enough that all the jobs 
can be completed. Due to the fact that the Multiprocessor Scheduling Problem and 
other related problems are hardly ever discussed with respect to C & P problems, we 
exclude Open Dimension Problems with more than one large object from the 
following considerations. 
 
 
7.9 Single Stock-Size Cutting Stock Problem 
 
Problems of this type include the Classic One-Dimensional Cutting Stock Problem 
(Gilmore & Gomory 1963, Wäscher & Gau 1996), in which standard (or: stock) 
material of a specific, single length has to be cut down into a weakly heterogeneous 
set of order lengths (small items). In the Classic Two-Dimensional Cutting Stock 
Problem (Gilmore & Gomory 1965), a weakly heterogeneous set of order rectangles 
has to be cut from stock plates of a specific, single size (length and width). In both 
problems, the number or the value of the necessary large objects (stock lengths or 
stock plates) has to be minimised. 
 
Examples for a three-dimensional (rectangular) problem of this type include the 
Multi-Pallet Loading Problem (as discussed in Terno et al. 2000) and the Multi-
Container Loading Problem (Scheithauer 1999), in which a weakly heterogeneous 
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assortment of cargo (i.e. a set of boxes) is to be packed on a minimum number of 
pallets or into a minimum number of containers (also see Bortfeldt 2000). 
 
 
7.10 Multiple Stock-Size Cutting Stock Problem 
 
Problems of this kind include the natural extensions of the One-Dimensional and 
Two-Dimensional Cutting Stock Problems to more than one stock size (see Gilmore 
& Gomory 1961, Rao 1976, Dyckhoff 1981, Scheithauer 1991, Belov & Scheithauer 
2002 for the one-dimensional and Riehme, Scheithauer & Terno 1996, Morabito & 
Arenales 1996 for the two-dimensional, rectangular case). The one-dimensional 
Multiple Stock-Size Cutting Stock Problem has also been considered under the name 
“Paper Trim Problem” in the literature (Golden 1976, p. 265f.). For a two-dimensional 
application (i.e. a two-dimensional, rectangular MSSCSP) from furniture 
manufacturing see Carnieri, Mendoza & Gavinho 1994. 
 
One of the container-loading problems discussed in Eley 2003 represents a three-
dimensional (rectangular) case of this problem type. Both containers and boxes can 
be grouped into classes. Associated with each container type are specific costs, the 
total costs of the containers necessary to accommodate all boxes are to be 
minimised. 
 
 
7.11 Residual Cutting Stock Problem 
 
For a Cutting Stock Problem with a strongly heterogeneous assortment of large 
objects we have chosen the name “Residual Cutting Stock Problem” here, because 
in practice this case comes about whenever large objects are to be used which 
represent unused parts of input material (“left-overs”) from previous C & P processes. 
Under the name of “Hybrid One-Dimensional Cutting Stock Problem” a one-
dimensional case of this problem type has been introduced in the literature (cf. 
Gradišar, Resinovič & Kljajić 2002, p. 1212, Gradišar, Kljajić & Resinovič 1999). The 
authors introduce a one-dimensional cutting problem, in which a weakly 
heterogeneous assortment of order lengths has to be cut from a set of input lengths 
which are all different. The supply of input lengths is sufficient to satisfy the demands, 
and the objective is to minimise the trim loss of the input lengths which are to be 
used (also see Gradišar et al. 1999, p. 559, case 1). They argue that traditional, pure 
item-oriented or pure pattern-oriented solution approaches are not appropriate. 
Instead, they suggest a new solution approach which is a combination of both. The 
two-dimensional case is considered in Vanderbeck 2001. Extensions of this problem 
type into three or even more dimensions have not been discussed in the literature so 
far. 
 
 
7.12 Single Bin-Size Bin Packing Problem 
 
The Classic (One-Dimensional) Bin Packing Problem is a representative of this 
problem type. It requires packing a given set of distinct small items of given weights 
to a minimal number of large objects (bins) of identical size (capacity) such that for 
each bin the total capacity of the small items does not exceed its capacity (cf. 
Martello & Toth 1990, Scholl, Klein & Jürgens 1997, Schwerin & Wäscher 1997). We 
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also note that this problem type has also been named Vehicle Loading Problem (cf. 
Golden 1976, p. 266) and Binary Cutting Stock Problem (cf. Vance et al. 1994) in 
the literature. The k-item Bin Packing Problem (cf. Babel et al. 2004) additional 
requires the assignment of at most k items to each bin. 
 
What is called the Two-Dimensional (Orthogonal) Bin Packing Problem (Lodi, 
Martello & Vigo 1999, 2002a, p. 379, Lodi, Martello & Monaci 2002, p. 242; Martello 
& Vigo 1998 also refer to this problem type as the Two-Dimensional Finite Bin 
Packing Problem in order to distinguish it from the Two-Dimensional Strip Packing 
Problem, in which the large object has an infinite extension in one dimension) 
consists of assigning a set of distinct rectangles orthogonally to a minimum number 
of rectangular bins. According to the suggested typology this is a two-dimensional, 
rectangular SBSBPP type. George, George & Lamar (1995, p. 693) mention the 
Cylindrical Bin Packing Problem. This is a two-dimensional circular SBSBPP, in 
which the large objects are rectangles and the small items are circles. Real problems 
of this kind arise in logistics when (a minimum number of) containers are to be 
loaded with pipes. 
 
In the Three-Dimensional (Orthogonal) Bin Packing Problem the items are 
assumed to be rectangular boxes which are to be fitted orthogonally into a minimal 
number of rectangular containers of identical size (cf. Lodi, Martello & Vigo 2002b). 
The Cube Packing Problem is a special case of the three-dimensional rectangular 
Bin Packing Problem, in which all boxes and bins are cubes (Miyazawa & 
Wakabayashi 2003). 
 
 
7.13 Multiple Bin-Size Bin Packing Problem 
 
The (One-Dimensional) Variable-Sized Bin Packing Problem (Chu & La 2001, 
Kos & Duhovnik 2002) is an extension of the Classic One-Dimensional Bin Packing 
Problem in which several bin types are introduced (i.e. it is a one-dimensional 
MBSBPP). Each bin type is in unlimited supply and characterised by specific costs 
and size. All the small items have to be assigned to bins, and the total costs of the 
used bins have to be minimised (cf. Kang & Park 2003). A two-dimensional, 
rectangular case is considered in Tarasova, Razanova & Gabitov (1997), in which 
the large objects are in limited supply and where the total area of the material 
necessary to cut all small items is to be minimised. 
 
 
7.14 Residual Bin Packing Problem 
 
In analogy to the Cutting Stock Problem, for this problem type which is characterised 
by a set of strongly heterogeneous large objects we have chosen the name 
“Residual Bin Packing Problem”.  
 
Chen, Lee & Shen (1995) consider a three-dimensional container loading problem, in 
which a weakly heterogeneous consignment of boxes has to be packed into 
containers available in different sizes. In one of the discussed situations, the 
available container space is not sufficient to accommodate all boxes. Therefore, a 
selection of boxes has to be determined that maximises the volume utilisation, or, 
alternatively, the value of the packed boxes (three-dimensional, rectangular RBPP). 
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8 Categorisation of Recent Literature (1995-2004) 
 
In order to demonstrate the practicability and usefulness of the suggested typology, 
the recent C & P literature has been reviewed and categorised according to the 
scheme introduced above. We concentrated on papers which are publicly available 
and have been published in English in international journals, edited volumes, or 
conference proceedings during the decade between 1995 and 2004. Monographs 
and working papers have not been considered in our investigation.  
 
In order to exclude publications from the periphery of C & P from our analysis, which 
are only of marginal interest to researchers and practitioners in the field, we restricted 
ourselves to papers related to C & P problems “in a narrow sense” (Dyckhoff 1990, p. 
148) in the first place. Papers on “abstract” C & P problems (Dyckhoff 1990, p. 148) 
have only been considered as far as these problems (like those of the knapsack 
type) have been introduced in the suggested typology, i. e. we refrained from 
including other papers from this category not addressing C & P directly, like papers 
on flow-line balancing (Talbot, Patterson & Gehrlein 1986, Scholl 1995), multi-
processor scheduling (Brucker 2001, pp. 107-154, Błażewicz et. al. 2001, pp. 137-
203), or capital budgeting (Lorie & Savage 1955). 
 
Furthermore, only papers dealing with C & P problems in the sense of refined 
problem types have been included in our analysis. Articles dealing with problem 
extensions and problem variants were not taken into account for. We note again that 
we have excluded papers of this kind only in order to keep the number of papers to 
be considered to a manageable size and to find a definition of a paper cluster that is 
of interest to researchers and practitioners in the field of C & P. Focussing our 
investigation in this particular way by no means limits the usefulness and the value of 
the suggested typology. In fact, also the problems discussed in papers which have 
been excluded here can be categorised according to our typology.  
 
Finally we remark that only such papers have been categorised which strictly satisfy 
the above-given definition of C & P problems and subsequent specifications. That 
means that papers e.g. dealing with divisable small items and/or large objects (Kang 
& Park 2003), or allowing the “overpacking” of bins (Coffman & Lueker 2001) do not 
appear in our analysis. 
 
As far as for December 2005, 413 papers have been identified containing material 
relevant in the above-described sense. These papers are listed at http://www.uni-
magdeburg.de/mansci/rm/cp_typology, together with the corresponding problem 
types to which they have been assigned. Table 1 shows what problem types and 
number of dimensions are dealt with in these papers. The total numbers given in this 
and the following tables is larger than 413 because in some papers more than one 
problem type is addressed. Consequently, those papers had to be counted more 
than once.  
 
Research on input minimisation problems (dealt with in 263 papers, 59 percent) 
clearly dominates research on output maximisation problems (182 papers, 41 
percent). One-dimensional and two-dimensional problems (172 papers, 39 percent, 
and 214 papers, 48 percent) are considered significantly more often than three-
dimensional ones (59 papers, 13 percent). 
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kind of assignment 
 

1D 
 

2D 
regular 

2D 
irregular

3D 
 

total 
 

input minimisation 108 79 52 24 263 
output 
maximisation 64 71 12 35 182 

total 172 150 64 59 445 

Table 1: Number of problem-relevant dimensions and assignment types of problems 
dealt with in the literature 

 
Fig. 12 and 13 give a more detailed analysis of how the papers are distributed over 
the different problem categories. Among research on output maximisation problems, 
papers on problems with a single large object are prevailing (165 papers, 37 percent 
of all papers and 91 percent of those belonging to the output-maximisation type). 
With respect to input minimisation, most of the publications deal with problems in 
which the assortment of large objects either consists of identical large objects of a 
single given size (127 papers, 29 percent of all papers, and 48 percent of those 
belonging to the input-minimisation type), or, alternatively, of a single large object 
with one variable dimension (102 papers, 23 and 39 percent). 
 
                           assortment 
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characteristics 
of the large 
objects 

identical 
 

weakly 
heterogeneous 

 

strongly 
heterogeneous 

 

one 
large object 

IIPP 
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56 

SKP 
86 

identical MILOPP 
1 
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6 

all 
dimensions 

fixed 
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MHLOPP 
4 
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6 

Fig. 12: Distribution of publications: output maximisation 
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SSSCSP 
38 

SBSBPP 
89 

weakly 
heterogeneous 

MSSCSP 
18 

MBSBPP 
4 

all 
dimensions 

fixed 

strongly  
heterogeneous 

RCSP 
10 

RBPP 
2 

one large object 
 

variable dimension(s) 

ODP 
102 

Fig. 13: Distribution of publications: input minimisation 
 
As becomes further evident, published research concentrates on five problem types, 
namely on the ODP (102 papers, 23 percent), SBSBPP (89 papers, 20 percent), SKP 
(86 papers, 19 percent), SLOPP (56 papers, 13 percent) and the SSSCSP (38 
papers, 9 percent). Papers on these five problem types account for 371 out of 445 
publications (83 percent). In Table 2 the numbers of papers which consider these 
problem types are further differentiated with respect to the number of problem-
relevant dimensions. 
 

problem types 1D 
 

2D 
regular 

2D 
irregular

3D 
 

total 
 

ODP - 46 49 7 102 
SBSBPP 61 17 2 9 89 
SKP 49 18 7 12 86 
SLOPP 4 32 1 19 56 
SSSCSP 29 2 1 6 38 
other 29 35 4 6 74 

total 172 150 64 59 445 

Table 2: Number of papers on selected problem types, differentiated according to the 
number of problem-relevant dimensions 
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Table 2 reveals that research on C & P still is rather traditionally oriented. It stresses 
areas which include clearly-defined (“classic”) standard problems, well-studied for 
three decades or an even longer period of time, such as the one-dimensional 
SBSBPP (including the Classic Bin Packing Problem), the two-dimensional ODP 
(including the Regular and the Irregular Strip-Packing Problem), the one-dimensional 
SSSCSP (including the Classic Cutting Stock Problem), the one-dimensional SKP 
(including the Classic Knapsack Problem), and the two-dimensional SLOPP 
(including the Distributor’s Pallet Loading Problem). As far as research departs from 
these traditional areas, it is devoted to straightforward extensions of these standard 
problems into a higher number of dimensions, e.g. to the two-dimensional Bin 
Packing Problem, the two-dimensional Knapsack Problem etc. Other kinds of 
problem extensions (e.g. considering different assortments of large objects and small 
items) which are probably more relevant to the solution of real-world C & P problems 
can only be found far less commonly in the literature, even though a few, more recent 
papers considering a heterogeneous assortment of large objects (51) seem to 
indicate that the preferences of researchers might be changing. 
 
We finally note (cf. Fig. 12) that the IIPP which has been extensively studied in the 
1980’s is only represented in 23 papers. This seems to indicate that the central 
standard problem of this type, the Classic Manufacturer’s Pallet Loading Problem, 
has been solved satisfactorily and that research has shifted to more complex 
problem situations recently, taking care, in particular, of a (weakly) heterogeneous 
assortment of small items (boxes to be packed). 
 
 
9 Outlook 
 
The suggested typology should be sufficient for an initial, brief orientation in a 
particular area of C & P. To practitioners and researchers confronted with particular 
C & P problems Fig. 2 points out the relevant problem parameters, allowing them to 
assign their problems to the relevant problem categories. An extensive database of C 
& P publications (also including those concerning problem extensions and problem 
variants), in which papers are classified and organised in accordance with the 
suggested typology, is available at the ESICUP webpage 
(http://www.apdio.pt/sicup/). It provides direct access to the literature of each specific 
problem type. 
 
Fig. 2 also outlines the area of future work. In order to structure the refined problem 
types further, it will be necessary to compile, analyse and group the respective 
additional constraints. Furthermore, problem extensions and problem variants and 
the corresponding standard problems have to be investigated in greater detail. 
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