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Abstract 

In this paper, we consider vehicle routing problems with backhauls and time windows (VRPBTW). 

Different backhaul variants are studied, namely clustered backhauls (CB), mixed linehauls and 

backhauls, and variants with simultaneous delivery and pickup and with divisible delivery and pickup. 

Three dimensional loading constraints are assumed. A two-phase approach following the principle 

packing first, routing second is proposed. In the first phase, the packing of goods is carried out by 

solving a 3D strip packing problem for each customer using tabu search. The resulting VRPTW 

instance is solved in the second phase using first a multi-start evolutionary strategy to minimize the 

number of vehicles while again tabu search is applied to minimize the total travel distance. We show 

that the various backhaul types can be incorporated into this framework. For the backhaul variants 

different from CB, unloading and reloading efforts are taken into account. Moreover, side loading and 

a separation of the loading space into separate compartments for goods of linehaul and backhaul 

customers are proposed. Computational results for benchmark instances and new randomly generated 

problem instances are presented that demonstrate that the heuristics determine high-quality solutions 

in a short amount of computing time. The unloading and reloading strategies outperform the strategies 

based on two separate compartments. 

Keywords: Transportation, Packing, Vehicle routing with backhauls and time windows, Three 

dimensional loading constraints, Integrated routing and packing problem 

1 Introduction 

Vehicle routing problems (VRPs) are important in many real-world applications. Recently, there is a 

trend to consider more real-world constraints in problem formulations (cf. Toth and Vigo 2014). This 

leads to the notation of rich VRPs (cf. Lahyani et al. 2015 and Caceres-Cruz et al. 2015). Important 

attributes of rich VRPs are backhaul customers, i.e., goods have to be picked up at the customer 

locations and have to be transported to the depot (cf. Caceres-Cruz et al. 2015). Another important 
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class of attributes is given by loading constraints, i.e., more complex loading strategies for the boxes 

with the customer goods are considered in addition to the fairly simple weight or volume constraints of 

the vehicles in conventional VRPs (cf. Lahyani et al. 2015 and Pollaris et al. 2015). Time windows are 

important in many real-world applications. This class of constraints is extensively considered in the 

literature (cf., for instance, Bräysy and Gendreau 2005a, 2005b).  

VRPs with backhaul and time window constraints are discussed to some extent in the literature (cf., 

for instance, Reimann and Ulrich, 2006, Parragh et al. 2008, Küçükoğlu and Öztürk 2015 amongst 

others). However, this is not true for the combination of backhauls and loading constraints. We are 

only aware of the paper by Bortfeldt et al. (2015) where a VRP with clustered backhauls and three 

dimensional loading constraints is studied and the paper by Pinto et al. (2015) where a VRP with 

mixed linehauls and backhauls and two dimensional loading constraints is investigated. Time windows 

are not considered in these two papers. More generally, the combination of 3D loading constraints and 

time windows is only rarely discussed in the literature. Therefore, there is a need to consider VRPs 

where backhauls, loading constraints, and time windows are combined. For instance, global moving 

companies have to deal with such problems because they have to deliver house moving items to the 

customers. At the same time they might collect packaging material and bring it back to the depot. 

Time windows are also important in this application scenario. 

In the present paper, we extend the approach proposed by Bortfeldt and Homberger (2013) for the 

VRPTW with 3D loading constraints (3L-VRPTW) by considering various types of backhauls. It turns 

out that the packing first, routing second (P1R2) heuristic from Bortfeldt and Homberger (2013) can 

be applied for situations with backhauls too. The P1R2 heuristic is based on the idea that in the 

packing stage the boxes of each customer are packed in a separate segment of the loading space by 

solving a 3D strip packing problem (3D-SPP) for each customer. A loading length arises for the boxes 

of each customer. In the second stage, the corresponding routing problem is solved where the sum of 

the loading lengths of the customers that are assigned to a single vehicle can not exceed the loading 

space length of the vehicle. In the present paper, we consider variants where we take into account the 

unloading and reloading effort caused by mixed sequences of linehaul and backhaul customers. We 

study also situations where the loading space of each vehicle is either divided into two vertical or 

horizontal compartments of the same size, namely one for boxes of linehaul and one for boxes of 

backhaul customers. Moreover, we investigate side loading in addition to rear-loading strategies. 

The paper is organized as follows. The problem is described in Section 2. This includes a 

discussion of related work. The proposed heuristics are presented in Section 3. The results of 

computational experiments are described in Section 4. Finally, conclusions and future research 

directions are discussed in Section 5.  

2 Problem Formulation and Related Work 

We start by formulating the problem in Subsection 2.1. We then discuss related work in Subsection 

2.2. 
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2.1 Problem Setting 

In this subsection, we describe the considered problems in detail. We look at the following four VRPB 

variants in the present paper that differ in the way how backhaul customers are dealt with: 

1. VRP with Clustered Backhauls (VRPCB): Each customer is either a linehaul or a backhaul 

customer. In each route, linehaul customers are visited before backhaul customers if any.  

2. VRP with Mixed Linehauls and Backhauls (VRPMB): Each customer is either a linehaul or a 

backhaul customer. However, in contrast to the VRPCB, linehaul and backhaul customers are 

allowed in an arbitrary, i.e. mixed, sequence.  

3. VRP with Simultaneous Delivery and Pickup (VRPSDP): Each customer is at the same time 

linehaul and backhaul customer. Only a single visit of each customer is allowed. 

4. VRP with Divisible Delivery and Pickup (VRPDDP): Each customer is at the same time 

linehaul and backhaul customer. However, in contrast to the VRPSDP, delivery and pickup at a 

customer location can be performed in a single visit or in two separate visits. Note that the 

vehicles used for the two visits of the same customer might be different in the present paper 

whereas the same vehicle is sometimes assumed for the two visits in the literature (cf., for 

instance, Irnich et al. 2014). 

Next, we describe the assumptions made in the present paper.  

 A vehicle fleet is considered that consists of an unlimited number of vehicles with an identical 

rectangular loading space with length L , width W , and height H . Each vehicle moves at a 

constant speed of 1 length unit/ 1 time unit. We differentiate between rear-loaded vehicles that 

have only a single compartment and rear-loaded vehicles with a single compartment for linehaul 

customers and with a single compartment for backhaul customers, respectively (cf. Wassan and 

Nagy 2014 for possible vehicle designs in different VRPB settings).  The two compartments 

have the same size. They are obtained by a horizontal or a vertical partition of the loading space. 

We refer to the first situation as double-deck loading, whereas the latter situation is called 

widthwise load partition. Double-deck loading and widthwise load compartments are depicted in 

Figure 1.  

© iStock.com/DivVector© iStock.com/DivVector  

Figure 1: Double-deck loading and widthwise load compartments 
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We will also consider the case where a side loading of the vehicles is performed (cf. Wade and 

Salhi 2002). In this situation, only a single compartment is required. The loading of a vehicle 

with linehaul boxes ends at the front, i.e., the boxes of the linehaul customer to be served last on 

the route are next to the cabin. At the same time, backhaul customers are loaded starting from 

the rear, i.e., the boxes of the first backhaul customer are located next to the door of the loading 

space of the vehicle. 

 A set of 1n  nodes, denoted by  n,,,V 10:  is used to model the depot and the customer 

sites. The node 0  refers to the single depot, while the n  customers are represented by the nodes 

n,,1 . Let E  denote the set of all undirected edges  j,i  that connect all pairs of nodes from 

V . The resulting graph is  E,VG : . A distance ,nji,cij  00  is assigned to each edge 

 j,i .  

 On the one hand, linehaul customer i  has to be delivered with a set of im  boxes 

iik m,,k,I 1 . Each box is a rectangular packing piece. The boxes for linehaul customers are 

initially located at the depot. On the other hand, backhaul customer j  is equipped with jm  

boxes jjk m,,k,I 1 , that are initially located at the corresponding customer location. The 

boxes associated with backhaul customers have to be picked up at the customer location and 

have to be transported to the depot. Furthermore, we assume that each box 

llk m,,k,n,,l,I  11  , has a length lkl , a width lkw , and a height lkh . Note that these 

settings lead to a volume of lks for box lkI . 

 The loading space of each vehicle is embedded into the first octant of a Cartesian coordinate 

system in such a manner that the length, the width, and the height of the loading space are 

parallel to the three axes of the coordinate system. The placement of a box lkI  is fully described 

by the coordinate triplet  lklklk z,y,x  that represents the corner of the box that is closest to the 

origin of the coordinate system. The spatial orientation of a box is described by a one-to-one 

mapping of the three box dimensions and the three coordinate directions. An orientation index 

lko  indicates which of the possible spatial orientations is selected for box lkI . A packing plan 

P  for a loading space consists in general of several box placements and is feasible if the 

following three constraints hold:  

(P1) Each placed box lies completely within the loading space. This means that the common 

scalar capacity of a vehicle in conventional VRPs is replaced by a 3D rectangular loading 

space. 

(P2) Any two boxes that are placed in the same truck loading space do not overlap. 

(P3) Each placed box lies parallel to the surface areas of the loading space.  

A loading space with placed boxes that are feasible is exemplified in Figure 2.  

Next, we discuss the route-related constraints that are common for all the four VRPB variants: 

(R1) Each route starts and ends at the depot. 
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Figure 2: Example loading space with placed boxes 

(R2) Each customer is visited exactly once in one route to deliver goods (if any) and each customer is 

visited once in one route to pick up goods (if any). Hence, in the VRPDDPTW variant a 

customer can be visited twice in one route or once in two routes or once in one route. In the 

remaining VRPB variants each customer is visited once in one route throughout. 

 (R3) Each vehicle performs exactly one trip, i.e., the number of routes is equal to the number of 

vehicles. 

(R4) A delivery time and/or pickup time window  ii l,e  with ii le   and a service time 0si   is 

associated with each linehaul/backhaul customer, respectively. Note that the regular service time 

can be increased if unloading and reloading efforts are necessary. On the one hand, each vehicle 

has to wait until ie  at the location of customer i  to begin with the delivery/pickup service, 

respectively. On the other hand, it is not allowed that the vehicle arrives later than il  at the 

location of customer i . There is an additional time window  00 l,e  for the depot that limits the 

total route duration. Note that for the VRPDDPTW two time windows are associated with each 

customer since up to two visits are possible for each customer. The corresponding time windows 

for customer i  associated with delivery and pickup activities are denoted by  L
i

L
i l,e  and 

 B
i

B
i l,e , respectively. Note that this differentiation is not required for the remaining three VRPB 

variants. 

The following additional loading constraints have to be ensured: 

(L1) Weight constraint: Each box ikI  has a weight 0dik  . For each point of time, the total weight 

of all boxes cannot be larger than the maximum load weight D  that is the same for all vehicles.  

(L2) Orientation constraint: Up to five spatial orientations are forbidden for certain boxes. Often one 

or two box dimensions are excluded as the height dimension, while horizontal 90° rotations are 

allowed (height constraint). If the height dimension is given for all boxes, this constraint is 

called this-way-up constraint. 
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(L3) Support constraint: A certain percentage a  of the base area of a box has to be supported by 

other boxes if the box is not placed on the floor of the loading space. When we denote by b  and 

c  the horizontal dimensions of the box above the floor, respectively, a portion of the base area 

of size cba  has to be placed on other boxes.  

(L4) Stacking constraint: Boxes are classified into fragile and non-fragile boxes. When a box is 

fragile only other fragile boxes might be placed on top of it, while both fragile and non-fragile 

boxes might be stacked on non-fragile boxes.  

(L5) LIFO constraint for the 3L-VRPCBTW and two-compartment situations assuming rear-

loaded vehicles: 

 Linehaul part: If customer i  is visited it has to be ensured that it is possible to unload all of his 

boxes exclusively using movements parallel to the longitudinal axis of the loading space or 

compartment. Therefore, it is not allowed to place any box belonging to another customer that is 

visited later than customer i  over a box of customer i  or between a box of customer i  and the 

rear. 

 Backhaul part: If customer i  is visited it has to be ensured that it is possible to load all of his 

boxes exclusively using movements parallel to the longitudinal axis of the loading space or 

compartment. Therefore, it is not allowed to place any box belonging to another customer that is 

visited before customer i  over a box of customer i  or between a box of customer i  and the 

rear. 

A feasible solution of a 3L-VRPB instance fulfills the constraints (P1)-(P3), (R1)-(R5), (L1)-(L4) 

and the constraints that are related to the visit of backhaul customers. Depending on the problem 

variant and the properties of the fleet, constraint (L5) must be additionally ensured. Given a 3L-VRPB 

instance, we are interested in determining a feasible solution that minimizes the number of vehicles 

 nv  as the primary objective, while minimizing the total travel distance  ttd  serves as a secondary 

objective. The four considered problem classes are abbreviated by 3L-VRPCBTW, 3L-VRPMBTW, 

3L-VRPSDPTW, and 3L-VRPDDPTW, respectively. The considered problem classes in combination 

with the possible loading strategies are summarized in Table 1. 

Table 1: Considered problem variants 
Loading strategy Single compartment Two compartments 

 Rear-loaded Side loading Double-deck Widthwise 

3L-VRPB variant  
3L-VRPTW X - - - 

3L-VRPCBTW X - - - 
3L-VRPMBTW X X X X 
3L-VRPSDPTW X X X X 
3L-VRPDDPTW X X X X 

 
For the sake of completeness, we also perform computational experiments for the 3L-VRPB variants 

without time windows and for the different VRPBTW variants.  
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2.2 Discussion of Related Work 

We discuss related work with respect to 3L-CVRP and 3L-VRPTW as well as with respect to 3L-

VRPB variants. Gendreau et al. (2006) introduce the 3L-CVRP. Most of the constraints described in 

Subsection 2.1 are already included in this problem formulation. A two-phase tabu search algorithm is 

taken. The outer tabu search determines routes, while the inner tabu search solves a 3D-SPP for a 

given customer sequence. Various heuristics are proposed for the 3L-CVRP (cf. Pollaris et al. 2015 for 

a recent survey). For instance, an ant colony optimization approach is discussed by Fuellerer et al. 

(2010), whereas Ruan et al. (2013) design a bee algorithm for the 3L-CVRP. Tabu search hybridized 

with guided local search is presented by Tarantilis et al. (2009). Some of the best performing 

heuristics are based on tabu search-type algorithms. Here, we refer for instance to Wisniewski et al. 

(2011), Bortfeldt (2012), Zhu et al. (2012), and Tao and Wang (2015).  

The 3L-VRPTW is only rarely discussed in the literature. We are only aware of the following three 

papers. Moura (2008) presents a multi-objective genetic algorithm for the 3L-VRPTW, while Moura 

and Oliveira (2009) propose different constructive heuristics for the same problem. The method 

proposed by Bortfeldt and Homberger (2013) consists of an evolutionary strategy and two tabu search 

procedures. A local search heuristic for the pallet packing VRPTW, considered as a variant of the 3L-

VRPTW, is discussed by Zachariades et al. (2012). The goods of the customers are first packed on 

identical pallets that are then loaded onto vehicles. The proposed heuristic does not take into account 

the LIFO condition.  

Next, we look at papers that deal with 3L-VRPB variants and related problems with loading 

constraints. The 3L-VRPCB has only been tackled by Bortfeldt et al. (2015). They propose a Large 

Neighborhood Search (LNS) and a Variable Neighborhood Search (VNS) scheme. The VRPMB with 

two dimensional loading constraints (2L-VRPMB) is discussed by Pinto et al. (2015). An insertion 

heuristic is proposed. Zachariades et al. (2016) describe a local search approach for the 2L-VRPSDP 

and the 2L-VRPCB. In addition, a bi-directional 2L-VRP is considered where linehaul and backhaul 

customers are served by different routes. Likewise, the VRP with pickup and delivery (PD) and 2D or 

3D loading constraints is only researched in three papers. Malapert et al. (2008) deal with the 2L-

VRPPD. Bartók and Imreh (2011) describe a heuristic for solving the 3L-VRPPD. However, it 

neglects the important LIFO constraint. Männel and Bortfeldt (2016) discuss several 3L-VRPPD 

variants. Hybrid approaches based on LNS and tree search heuristics are proposed. We are not aware 

of any paper that deals with the 3L-VRP, backhauls, and time windows at the same time. 

The most pertinent research for the present paper is Bortfeldt and Homberger (2013) with the 

above mentioned P1R2 approach. We extend this approach to allow for considering various types of 

backhaul customers. In addition, we look at different strategies to deal with unloading and reloading 

efforts that are a result of the simultaneous occurrence of linehaul and backhaul customers. Finally, we 

propose new benchmark instances for the four considered 3L-VRPBTW classes. 

3 Heuristic Approaches 

In this section, we start by discussing the overall framework of the P1R2 scheme in Subsection 3.1. 

Modifications of the original P1R2 heuristic are also presented in Subsection 3.1. We discuss how the 
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framework can be tailored to the four 3L-VRPB variants in Subsection 3.2. The resulting heuristic is 

called Backhaul P1R2 (BP1R2) in the rest of this paper. 

3.1 Overall Framework 

3.1.1 Two-stage Decomposition Heuristic 

For the sake of completeness, we start by recalling the main ingredients of the P1R2 heuristic for the 

3L-VRPTW. The main idea of the P1R2 heuristic consists in decomposing the solution process into 

two stages. The first stage is devoted to packing, while the second stage deals with routing.  

We start by discussing the packing stage. Here, the boxes of each customer are packed in a separate 

segment of the corresponding loading space. A 3D-SPP instance for customer i , n,,i 1 , is fully 

defined by the width W , the height H , and the set of boxes associated with the customer. The 

(minimal) loading length ill  and the packing plans for the boxes of each customer i  are stored. 

Loading-related constraints have to be ensured when the 3D-SPP instance is solved. 

In the second stage, routes are calculated for the VRPTW instance that is derived from the 

corresponding 3L-VRPTW instance. It is important to note that only those routes R  are feasible that 

fulfill the loading length constraint 



Ri

i Lll . We note that this constraint for the routes plays the role 

of the capacity constraint in the derived VRPTW instance. In addition, other conventional VRPTW 

constraints have to be fulfilled to obtain feasible routes. Customer combinations are an additional 

feature of the approach. A customer combination is a set of customers with low utilized segments 

whose boxes are grouped together in one segment to increase the segment utilization and to reduce the 

loading length. When the second stage is completed, a solution is given by taking the routes R  and 

arranging the corresponding packing plans. 

3.1.2 Integrated Algorithms 

The 3D-SPP subproblems resulting from the first stage are solved using the tabu search algorithm 

proposed by Bortfeldt and Gehring (1999). This tabu search algorithm still provides high-quality 

solutions (cf. Bortfeldt and Mack 2007). We refer to Bortfeldt and Homberger (2013) for a more 

detailed algorithmic description of the first stage of the P1R2 scheme. 

The two-phase approach by Homberger and Gehring (2005) for solving the VRPTW is used in the 

second stage of the P1R2 scheme. The number of vehicles nv  is minimized in the first phase applying 

an evolutionary strategy while the total travel distance ttd  is minimized in the second phase of the 

approach using a tabu search approach. 

The   ,  evolutionary strategy used in the first phase generates offspring using neighborhood 

structures that are based on the well-known Or-opt, 2-opt*, and 1-interchange operators (cf. Bräysy 

and Gendreau 2005a for a description of these operators). The three neighborhood structures are 

randomly selected per descendant. The initial generation is determined using the modified savings 

heuristic from Homberger and Gehring (2005). A lexicographical evaluation function is applied that 

guides the search towards a direction that reduces the number of vehicles. A heuristic that removes 

customers from the route with the smallest number of customers is another important ingredient of the 
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evolutionary strategy. The evolutionary strategy terminates when a given maximum computing time or 

a lower bound for the number of vehicles is reached. The first lower bound is given as the ratio of the 

sum of the minimum load lengths of all customers and the length of the loading space L . A similar 

lower bound is considered that is based on the weight constraint (L1). 

The tabu search heuristic of the second phase is again based on the three neighborhood structures 

of the first phase. They are randomly chosen per iteration. The tabu list is used to store the link 

between nodes, while a solution is set tabu if at least one of its links can be found in the tabu list. The 

number of vehicles obtained from the first phase is not increased in the second phase where we aim for 

reducing the ttd  value. The tabu search scheme is able to produce high-quality solutions (cf. Nagata et 

al. 2010), at least with respect to minimizing the number of vehicles. We refer to Bortfeldt and 

Homberger (2013) for more details of the second stage algorithm of P1R2. 

3.1.3 Improvement of P1R2 

We propose a fairly straightforward modification of P1R2. However, it improves the performance of 

the heuristic to a large extent as we will see in Section 4 when we present the results of computational 

experiments. The first modification is based on the observation that the   ,  evolutionary strategy 

and the tabu search algorithm often improve the results considerably at the beginning of the search 

process but after a while the improvement process stagnates. Therefore, we perform restarts of the 

second stage of the P1R2 approach after a certain amount of time. Let nr  be the number of restarting 

iterations. The maximum computing time per instance ct  is equally distributed among the different 

iterations by giving each restarting iteration an amount of computing time that is equal to nr/ct . The 

evolutionary strategy is initialized in iteration 2iter  with the best solution found in previous 

iterations. The proposed restarting strategy is also applied within the BP1R2 approach.  

3.2 Tailoring the Framework for the Different Backhaul Variants 

3.2.1 Modification of the First Stage 

Modifications are required because of the different 3L-VRPB variants and the possibility to have more 

than one compartment, i.e., boxes of each customer are packed in a separate segment of the 

corresponding compartment of the loading space. Up to two 3D-SPP instances, namely one for 

linehaul and one for backhaul boxes, have to be solved for each customer depending on the considered 

3L-VRPB variant. Note that either the width W  or the height H  of the loading space is divided in 

half if two compartments are available. The loading lengths and the packing plans for linehaul boxes 

(if any) and for backhaul boxes (if any) of each customer are stored. We denote the loading length for 

each customer i  by ill  if the customer has either linehaul or backhaul boxes, i.e. in the case of the 3L-

VRPCBTW and 3L-VRPMBTW. If customer i  has linehaul and backhaul boxes at the same time, i.e. 

for the 3L-VRPSDPTW and the 3L-VRPDDPTW, we denote the corresponding loading length by L
ill  

and B
ill , respectively. Note that the constraints (L1)-(L4) have to be ensured by the first stage. The 

modified first stage is summarized in the following algorithm outline in pseudo code: 

BP1R2 (First Stage)(IN: customer set, OUT: packing plans, loading lengths)  
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FOR each customer DO 

 IF (customer is either a linehaul or a backhaul customer) DO 

- solve the 3D-SPP instance associated with the customer 

- store the resulting packing plan and the loading length ill  

 ELSE 

- solve  a separate 3D-SPP instance for linehaul and backhaul boxes  

  for the customer 

- store the resulting packing plans and the loading lengths L
ill  and B

ill  

 ENDIF 

ENDFOR 

END. 

3.2.2 Modifications of the Second Stage 

Modifications of the second stage are required because of backhaul customers and because of two 

compartments, namely the loading length constraint  

(LL1)       



Ri

i Lll                (1) 

for each route R  of an 3L-VRPTW instance has to be changed to deal with backhauls. We start by 

discussing the situation that the loading space is not divided into two compartments. In the case of the 

3L-VRPCBTW, we have to ensure that   

(LL2)      L,ll,ll
LCRi BCRi

ii 







 
 

max ,    (2) 

where we denote the set of linehaul customers by LC  and the set of backhaul customers by BC . 

Next, we discuss the 3L-VRPMBTW. Here, we have to formulate the loading length constraint for 

each customer i of a route R  as follows: 

(LL3)       
  

 
 


i,RLj i,RBk

kj Lllll  ,             (3) 

where  i,RL  is the set of linehaul customers from R  that are not unloaded until or at the location of 

customer i . Similar,  i,RB  is the set of backhaul customers from R  that are loaded before or at the 

location of customer i . In the case of the depot 0 , constraints (LL3) reads as (LL2). Note that it is 

enough to check (LL3) for the depot and for such backhaul customers, where at least one successor is 

a linehaul customer. We continue by considering the 3L-VRPSDPTW case. In this situation, constraint 

(LL3) has to be fulfilled for each customer i of a route R . However, in contrast to the 3L-VRPMBTW 

case    i,RBi,RLj   is possible. Finally, constraint (LL3) has to be fulfilled in the 3L-VRPDDP 

case too. However, in contrast to the previous cases, the customers have to be replaced by pairs of 

customers and route positions since up to two visits are possible for each customer. 

Next, we discuss the two-compartment situation. For the 3L-VRPMBTW, constraint (LL2) is 

correct since each customer is either linehaul or backhaul. For the 3L-VRPSDPTW and 3L-

VRPDDPTW variants we have to ensure the following constraint that is similar to (LL2): 
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(LL4)      Lllll
Ri Ri

B
i

L
i 







 

 

,max .      (4) 

The side loading strategy can be considered as a rear-loading strategy. Therefore, the constraints 

(LL2) and (LL3) have to be enforced for the related 3L-VRPBTW variants. Moreover, the constraints 

(R1)-(R5) have to be ensured. Note that customer combinations (see Subsection 3.1.1) are not 

considered in BP1R2 in contrast to the 3L-VRPTW case since it is likely that a grouping of linehaul 

and backhaul boxes in a single segment leads to additional unloading and reloading efforts. 

Both the   ,  evolutionary strategy and the tabu seach algorithm randomly choose a 

neighborhood structure (see Subsection 3.1.2) for each move. A new solution is determined from a 

corresponding neighborhood of the incumbent solution. Only feasible moves will be considered in this 

situation. These feasibility checks are different for the four 3L-VRPBTW variants and will be 

described in separate subsections below. Note that 3L-VRPBTW variant-specific feasibility checks 

will also occur in the modified savings heuristic.  

3.2.3 Modifications of the Second Stage for 3L-VRPCBTW 

Linehaul and backhaul customers are clustered in the 3L-VRPCBTW. In addition, all linehaul 

customers have to be delivered before any backhaul customer on each route. Therefore, we introduce 

the binary indicator 






otherwise1

customerlinehaulaiscustomerif0
:

,

i,
cti       (5) 

for each customer i  to model these precedence constraints. Note that a similar idea is used in Vidal et 

al. (2014) to consider VRPCB-type problems by using a very large artificial distance between 

backhaul and linehaul customers. Therefore, the precedence constraints between linehaul and backhaul 

customers will be ensured.  

For an arbitrary route  00: ,,j,i,,R   with customers i  and j  that are visited in a consecutive 

manner we have to ensure that  

ji ctct                     (6) 

is valid whenever a move is applied in the evolutionary strategy or in the tabu search algorithm. In 

addition, constraints (6) have to be checked whenever subroutes are merged in the modified savings 

algorithm. Note that the resulting checks can be performed in  1O  time since only the affected 

customer nodes have to be considered.  

We also have to change the lower bound for the number of vehicles that is used in the evolutionary 

strategy as a stopping criterion. The following expression is used: 
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

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
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
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L

nv
1111

max ,      (7) 

where we abbreviate by 



im

1k
iki dd the weight of the im  boxes that belong to customer i . 

Differentiating between linehaul and backhaul customers is required because they are clustered. 
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Because of the clustering of linehaul and backhaul customers and the LIFO constraint, unloading and 

reloading effects do not occur. 

3.2.4 Modifications of the Second Stage for 3L-VRPMBTW 

In this situation, each customer is either a linehaul or a backhaul customer. No precedence constraints 

have to be ensured for the visits of the customers. If a rear-loaded vehicle is considered and the 

loading space is not divided into two compartments, it is likely that unloading and reloading efforts 

occur since backhaul boxes are placed infront of linehaul boxes during the trip. A simple single-

vehicle example is shown in Figure 3. After unloading the boxes that belong to customer 1, the boxes 

of backhaul customer 2 are loaded infront of the boxes of linehaul customer 4. Hence, the LIFO 

constraint is not fulfilled anymore.  

depot

linehaul customer

backhaul customer

0

0

1
2

4

5

3

 

Figure 3: Simple example for unloading and reloading efforts 

The additional effort that is caused by unloading and reloading activities is measured based on the 

weights of the affected boxes, i.e. the boxes that have to be unloaded and reloaded. However, the 

volume of the boxes or a combination of weight and volume might be taken into account too.  

Only backhaul boxes are subject of unloading and reloading activities since we assume rear-loaded 

vehicles. This approach is reasonable because backhaul items are often empty packaging or waste that 

are less sensitive with respect to damages. But other unloading and reloading strategies seem to be 

possible too. The unloading and reloading effort leads to increasing service times. Therefore, we use a 

factor   that has the dimension of time divided by weight, i.e., 1  means that one weight unit of 

reloading effort costs one time unit. The procedure to compute the unloading and reloading effort eff  

for a given linehaul customer k  can be described in pseudo code notation as follows: 

CalculateAdditionalLoadingEffort( IN: route R , customer k , factor  , OUT: effort eff ) 

0eff ; kstart  ; 

WHILE (   0startpred  ) DO 

  startpredstart  ; //determine first customer of route R  

ENDWHILE 

WHILE ( kstart  ) DO  // at least one predecessor customer has to be backhaul customer to  

  // cause unloading and reloading efforts 
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 IF ( 1startct ) THEN 

  startdeffeff 2 ; // add unloading and reloading effort 

 ENDIF 

  startsuccstart  ; 

ENDWHILE 

 effeff  ; // determine additional service time 

END. 

Here,  vpred  provides the customer that is the direct predecessor of customer v  on route R . The 

direct successor of customer v  on route R  is denoted by  vsucc . Different variants of the 

CalculateAdditionalLoadingEffort procedure are used in the BP1R2 scheme for 3L-VRPMBTW 

depending on the neighborhood structures.  

The additional unloading and reloading time has to be considered when the time window 

constraints (R5) are checked if route changes occur due to moves. We show an example for the 

required feasibility checks when inserting customer k  between customer i  and j  in a route. The two 

checks to be performed are: 

kiki lcdt  ,                 (8) 

  jkjkkkiki atceffse,cdt max ,                 (9) 

where idt  is the earliest possible departure time of the vehicle at the location of customer i , and jat  

is the latest possible arrival time at the location of customer j . Constraint (8) ensures that the inserted 

customer k  can be reached from customer i  within the time window for customer k  whereas 

constraint (9) models the fact that the latest possible arrival time of the vehicle at the location of 

customer j  is not smaller than the sum of the start of the service, the service time, and the unloading 

and reloading time at the location of customer k . Note that the latest possible arrival time can be 

different from the latest point of time for service since the additional unloading and reloading effort at 

the location of customer j  caused by including customer k  has to be taken into account. 

The unloading and reloading effort can be avoided when separate compartments for linehaul and 

backhaul boxes are used. However, this approach has the disadvantage that only one half of the overall 

loading space is reserved for linehaul and backhaul boxes, respectively. This might lead to a poor 

utilization of the compartments. Increasing nv  values might be a consequence.  

Side loading of the vehicles is another considered strategy in this paper. It turns out that this 

approach leads to a loading situation where the segments of the cluster with backhaul boxes are 

mirrored compared to the single compartment situation. Therefore, the side loading strategy can be 

considered as a rear-loading strategy with a single compartment where the time needed for unloading 

and reloading activities is zero. We refer to side loading in the computational results by using the 

notation 00. . A small size example is depicted in Figure 4. It consists of a route that contains 
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eight customers, namely the four linehaul customers 41 L,,L   and the four backhaul customers 

41 B,,B  . The sequence of customer visits is 00 43423211  BBLBLLBL . 

a) rear-loaded vehicle, route 0- 1L - 1B - 2L - 3L - 2B - 4L - 3B - 4B –0 

depot 0: 
front 4L  3L  2L  1L  empty Rear 

after 1L : 

front 4L  3L  2L  empty Rear 

after 1B : 

front 4L  3L  2L  1B  empty Rear 

after 2L : 

front 4L  3L  1B  empty Rear 

after 3L : 

front 4L  1B  empty Rear 

after 2B : 

front 4L  1B  2B  empty Rear 

after 4L : 

front 1B  2B  empty Rear 

after 3B : 

front 1B  2B  3B  empty Rear 

after 4B : 

front 1B  2B  3B  4B  empty Rear 
 

b) vehicle with side loading, route 0- 1L - 1B - 2L - 3L - 2B - 4L - 3B - 4B –0 

depot 0: 
front 4L  3L  2L  1L  empty Rear 

after 1L : 

front 4L  3L  2L  empty Rear 

after 1B : 

front 4L  3L  2L  empty 1B  Rear 

after 2L : 

front 4L  3L  Empty 1B  Rear 

after 3L : 

front 4L  Empty 1B  Rear 

after 2B : 

front 4L  Empty 2B  1B  Rear 

after 4L : 

front Empty 2B  1B  Rear 

after 3B :  

front empty 3B  2B  
1B  Rear 

after 4B : 

front empty 4B  3B  
2B  1B  Rear 

Figure 4: Example for side loading 
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The situation for a rear-loaded vehicle is shown in Figure 4 a). The unloading and reloading effort 

is indicated by dark gray-coloured backhaul customers. Figure 4 b) depicts the situation for a vehicle 

with side loading. We clearly see the mirrored clusters with backhaul boxes in Figure 4 a) and b).  

3.2.5 Modifications of the Second Stage for 3L-VRPSDPTW 

Since each customer in a 3L-VRPSDPTW instance has simultaneously linehaul and backhaul boxes, 

we have to solve a separate 3D-SPP instance for the linehaul and backhaul boxes of each customer, 

respectively. Therefore, we obtain minimum loading lengths L
ill  and B

ill  for each customer. In the 

case of rear-loaded vehicles with a single loading space, all linehaul boxes that belong to a customer 

will be delivered before all backhaul boxes of this customer will be picked up. Unloading and 

reloading effort arises for each customer on a route in the case of rear-loaded vehicles with a single 

loading space except for the customer that will be visited right after the depot. The corresponding 

effort can be computed, in principle, based on the CalculateAdditionalLoadingEffort procedure 

described in Subsection 3.2.4. However, the second while loop in this procedure has to be slightly 

modified in the sense that the check for backhaul customers is not required anymore and that only the 

weight of the backhaul boxes has to be considered to determine the unloading and reloading effort. 

3.2.6 Modifications of the Second Stage for 3L-VRPDDPTW 

In the 3L-VRPDDPTW, again each customer owns simultaneously linehaul and backhaul boxes. 

However, in contrast to the 3L-VRPSDPTW case, two visits are possible for each customer to deal 

with the delivery and pickup activities. It is possible to reformulate this problem into a 3L-

VRPMBTW by doubling the number of considered customer nodes. This means that for each cus-

tomer ni,i 1 , of the original instance an additional customer node ni   for backhaul boxes will be 

considered. The original customer node exclusively represents the linehaul boxes of customer i .  

Two cases can be differentiated. In the first case, customer i  is not the direct successor or 

predecessor of customer ni   in a route R . Two visits of the original customer i  are necessary in this 

situation. In the second case, customer i  and ni   are adjacent in a route R , i.e., only a single visit of 

the original customer ni,i 1  is required. Again we assume that the linehaul boxes belonging to 

customer i  will be delivered before the corresponding backhaul boxes are picked up to avoid unnece-

ssary unloading and reloading efforts. The two cases are again reflected by the procedure Calculate-

AdditionalLoadingEffort.  

4 Computational Experiments 

In this section, we start by describing the design of experiments in Subsection 4.1. The para-

meterization of the heuristics and implementation issues are discussed in Subsection 4.2. We then 

present the details of the computational experiments in Subsection 4.3. 

4.1 Design of Experiments 

In this subsection, we describe the problem instance classes used within the computational 

experiments. We consider the following four main instance classes: 

1. Problem instances for the VRPCBTW, the VRPMBTW, and the VRPSDPTW available in the 

literature are used to assess the performance of the proposed heuristics in the case that no 3D 
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loading constraints are given. Note that to the best of our knowledge, instances for the 

VRPDDPTW are not described in the literature. The computational experiments for this instance 

class are performed to demonstrate that we use a routing heuristic that is able to determine high-

quality solutions. 

2. Already existing problem instances for the 3L-VRPTW are taken to demonstrate that the 

modifications of the P1R2 approach are beneficial with respect to the results presented by 

Bortfeldt and Homberger (2013). Note that only those results from Bortfeldt and Homberger 

(2013) are used for comparison that are obtained by the P1R2 variant that does not support 

customer combinations.  

3. New problem instances for the 3L-VRPCBTW, 3L-VRPMBTW, 3L-VRPSDPTW, and 3L-

VRPDDPTW are generated. 

4. For the sake of completeness, problem instances for the 3L-VRPCB, 3L-VRPMB, 3L-VRPSDP, 

and 3L-VRPDDP are considered. These results complement the results for the Class 3 instances. 

The problem instances for Class 1 and Class 2 are taken from Gelinas et al. (1995), Wang and Chen 

(2012), Moura and Oliveira (2009), and Bortfeldt and Homberger (2013). Due to space limitations, we 

do not describe the instances in detail. The main features are summarized in Table 2. 

Table 2: Description of the problem instances (Class 1 and 2) 
Class Origin Characteristics 

3 15 instances with 25, 50, and 100 customers, respectively1a: VRPCBTW 
1b: VRPMBTW 

Gelinas et 
al. (1995) based on Solomon (1987) instances

56 instances with 100 customers, organized in six different groups 1c: VRPSDPTW 
 

Wang and 
Chen 

(2012) 
based on Solomon (1987) instances 

46 instances with 25 customers 
based on VRPTW instances of Solomon (1987) (R1 and R2) and 
container loading problem instances (CLP) of Bischoff and Ratcliff 
(1995) 
weakly heterogeneous box sets, between 1010 and 1550 boxes per 
instance 

2a: 3L-VRPTW Moura and 
Oliveira 
(2009) 

instance groups: 
GI-I1: based on R1 instances, tight time windows, 
GI-I2: based on R2 instances, wide time windows, 
GII-I1: 1050 boxes, i.e. on average 42 boxes per customer, 
GII-I2: 1550 boxes, i.e. on average 62 boxes per customer 

120 instances, number of customers ranging from 100 to 1000 
based on VRPTW instances of Solomon (1987) (R1 and R2) and 
Gehring and Homberger (1999) (R1 and R2) and CLP instances of 
Bischoff and Ratcliff (1995) (BR2 and BR4) 
weakly heterogeneous box sets, between 5000 and 50,000 boxes per 
instance

2b: 3L-VRPTW Bortfeldt 
and Hom-

berger 
(2013) 

instance groups: 
six groups with 20 instances per group, the groups are given by the 
pairs (100,5000), (200,10000), (400,20000), (600,30000), 
(800,40000), (1000,50000) where the first component is the number 
of customers and the second one the number of boxes, for each 
group systematic combination of the R1, R2, BR2, and BR4 sets are 
used to obtain tight and wide time windows and varying number of 
box types and number of boxes per customer  
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Because there are no publicly available instances for Class 3 and Class 4, new instances are 

generated as follows. Seven groups of instances are considered for Class 3. Two instances are 

randomly taken from each of the four instance groups found in Moura and Oliveira (2009). Therefore, 

eight customer sets with corresponding boxes are included in the first group. Each customer set 

contains 25 customers. The number of boxes for the original GI instances is changed from 1050 to 

1025 boxes to allow for a reasonable loading space separation, while the number of boxes for the GII 

instances is changed from 1550 to 1410 boxes for the same reason. For each of the remaining six 

groups, four instances are randomly selected from the corresponding instance groups proposed by 

Bortfeldt and Homberger (2013). 24 customer sets with corresponding boxes are obtained by this 

procedure. The largest problem instances contain 1000 customers. As proposed by Goetschalckx and 

Jacobs-Blecha (1989), a linehaul portion of 50%, 66%, and 80% is chosen for each customer set. The 

linehaul and backhaul attributes are randomly assigned to the customers while the correct linehaul 

portion is ensured. The boxes of each instance are equipped with a random weight measured in tons 

taken from  0.20.02,U  where  b,aU  denotes a uniform distribution over the interval  b,a . The 

maximum load weight of 24D  tons is used for each vehicle. Overall, we obtain 96 new problem 

instances that can be used for the four 3L-VRPBTW variants. The main features of the Class 3 

instances are summarized in Table 3. The instances are available from VRP Instances (2016). 

Table 3: Description of the Class 3 problem instances 
Class Characteristics 

96 instances for the 3L-VRPCBTW/3L-VRPMBTW and for the 3L-VRPSDPTW/ 
3L-VRPDDPTW, the number of customers per instance is ranging from 25 to 1000 
based on the instances of Moura and Oliveira (2009) and Bortfeldt and Homberger 
(2013) 
weakly heterogeneous box sets, between 1025 and 50,000 boxes per instance 

3:  
3L-VRPBTW 

instance groups: 
G1: two instances of each instance group of Moura and Oliveira (2009), i.e. a total 
of eight instances, 
G2-7: four instances of the six instance groups of Bortfeldt and Homberger (2013), 
i.e. a total of 24 instances, 100, 200, 400, 600, 800, and 1000 customers are 
included in the six groups 

 

Note that we have only a single time window for each customer, i.e.    B
i

B
i

L
i

L
i l,el,e  , in our 

VRPDDPTW problem instances. Class 4 instances are directly obtained from Class 3 instances by 

neglecting the time windows. 

The number of vehicles, the total travel distance, and the total unloading and reloading effort are 

the performance measures of interest. They are abbreviated by nv , ttd , and tre , respectively. Three 

independent replications are performed for each heuristic with stochastic ingredients to obtain 

statistical reasonable results. The average value of the corresponding performance measure values is 

taken. 

4.2 Parameter Setting for the Heuristics and Implementation Issues 

All the parameters for the different ingredients of the P1R2 approach except the amount of allowed 

computing time are chosen as in the original papers (cf. Bortfeld and Gehring 1999 for the 3D-SPP 
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and Homberger and Gehring 2005 for the VRPBTW variants). The maximum amount of computing 

time per instance is taken from Bortfeldt and Homberger (2013). This means that for each of the two 

phases of the second stage of the BP1R2 heuristic a computing time of 30 seconds per instance with 

25 customers and a computing time of 240 seconds per instance with more than 25 customers are 

allowed. A single restart of the second stage of the P1R2 approach and of the BP1R2 approach, 

respectively, is performed. The maximum computing time per instance is equally distributed among 

the two restarting iterations. The search of the evolutionary strategy is expedited by using the lower 

bounds based on the load length and the weight (see Subsection 3.1.2) or, if appropriate, the lower 

bound (7). Moreover, the tabu search algorithm for routing decisions terminates when 500,000 

consecutive iterations do not lead to an improvement. Note that up to 3,000,000 tabu search iterations 

are possible within 240 seconds. Moreover, for all Class 1 instances a maximum computing time of 30 

seconds per phase is allowed.  

An unlimited amount of computing time is possible for the first stage, i.e. the packing procedure. 

However, the boxes that belong to a single customer require even in the case of instances with 50,000 

boxes less than one second of computing time. This means that the required computing time for 

packing even for large-size instances with 1000 customers and 50,000 boxes is typically smaller than 

300 seconds. 

The support constraint factor %a 100  is selected within the computational experiments. In 

addition, the factor   to compute the unloading and reloading effort is taken from  5210 ,,, . Note 

that 0  corresponds to vehicles with side loading, i.e., no unloading and reloading effort occurs in 

this situation. 

The heuristics presented in this paper are coded in the C++ programming language. All the 

computational experiments are conducted on a computer with Intel Xeon CPU E5-2620 2.0 GHz 

processor and 32 GB of RAM. Since the proposed heuristic is single threaded only a single core is 

used. 

4.3 Computational Results 

4.3.1 Results for Class 1 Instances 

We start by presenting results for Class 1a instances. Note that we make sure that each route contains 

at least one linehaul customer. This restriction is important to ensure that our results are comparable 

with the results from the literature. The absolute values for the two performance measures are shown 

in Table 4. In addition, the table contains the results of a comparison with results obtained by Vidal et 

al. (2014) for problem instances with 100 customers using the hybrid genetic algorithm (HGA) from 

the unified solution framework for multi-attribute vehicle routing problems. The best result out of ten 

independent runs of the genetic algorithm for each problem instance is shown. We report the deviation 

that is given by  

       %MMMdev 100BP1R2HGA1:  ,               (10) 
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where  ttd,nvM   is the performance measure of interest. The argument of M  indicates whether the 

performance measure value is computed for solutions obtained by the HGA or by the BP1R2 

approach. 

Table 4: Computational results for Class 1a instances 
25 customers 50 customer 100 customers Vidal et al. (2014), 100 customers Instances 

 nv ttd nv ttd nv ttd nv ttd dev(nv) dev(ttd) 

BHR101A 9 644.8 13 1149.7 22 1822.2 22 1818.9 0.00 0.18 
BHR101B 10 727.6 16 1255.3 23 1959.5 23 1959.5 0.00 0.00 
BHR101C 9 693.5 16 1242.6 24 1939.1 24 1939.1 0.00 0.00 
BHR102A 7 564.6 11 989.6 19 1655.1 19 1653.2 0.00 0.11 
BHR102B 9 629.1 15 1109.5 22 1753.9 22 1750.7 0.00 0.18 
BHR102C 8 586.3 15 1115.2 22 1775.8 22 1775.8 0.00 0.00 
BHR103A 5 505.3 8 847.9 15 1387.1 15 1385.4 0.00 0.12 
BHR103B 5 546.1 9 906.9 15 1401.5 15 1390.3 0.00 0.80 
BHR103C 5 497.0 10 896.3 17 1468.5 17 1456.5 0.00 0.82 
BHR104A 4 463.4 6 697.3 11 1111.5 10 1204.6 9.09 -8.37 
BHR104B 5 484.6 7 764.0 11 1178.8 11 1154.8 0.00 2.03 
BHR104C 4 456.5 7 749.1 11 1232.6 11 1190.2 0.00 3.44 
BHR105A 6 574.0 9 1102.9 15 1579.1 15 1560.1 0.00 1.20 
BHR105B 7 633.3 10 1057.3 16 1583.3 16 1583.3 0.00 0.00 
BHR105C 6 623.6 10 1075.2 16 1720.6 16 1709.7 0.00 0.64 

Total 99 8629.7 162 14958.7 259 23568.6 258 23532.0 - - 
Average - - - - - -   0.39 0.16 

 

We see from Table 4 that the HGA outperforms BP1R2 on average only by 0.39% for the nv  

performance measure and by 0.16% with respect to ttd . Note that the computing time per instance is 

around four minutes in Vidal et al. (2014) whereas the computing time per instance is around 60 

seconds for the proposed BP1R2 approach. 

Next, we present computational results for Class 1b instances. Again, first absolute values are 

presented while we also compare the results for problem instances with 100 customers with results 

described by Küçükoğlu and Öztürk (2015). They propose a heuristic that hybridizes simulated 

annealing with tabu search. Their objective function is only ttd . The corresponding computational 

results are presented in Table 5. The deviation from the results of Küçükoğlu and Öztürk (2015) is 

computed based on 

       %MMMdev 1001HHBP1R2:  ,    (11) 

where  HHM  is the performance measure value for the hybrid heuristic and where  ttd,nvM   is 

the performance measure of interest.  

The results in Table 5 demonstrate that the results by Küçükoğlu and Öztürk (2015) are slightly 

outperformed by the proposed BP1R2 heuristic with respect to ttd . It is remarkable that we obtain 

some new best results since our primary objective function is nv  and not ttd . These results are 

marked in bold. Note that the computing time of HH per instance is between one and two minutes. 

Overall, we conclude that the second stage of the BP1R2 heuristic, namely the modified two-phase 

approach by Homberger and Gehring (2005), leads to high-quality solutions that are competitive with 

state-of-the-art approaches described in the literature. 
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Table 5: Computational results for Class 1b instances 
25 customers 

 
50 customers 

 
100 customers 

 
Küçükoğlu and Öztürk (2015), 100 

customers 
Instances 
 
 nv ttd nv ttd nv ttd nv ttd dev(nv) dev(ttd) 
BHR101A 8 618.3 11 1100.7 19 1653.6 21 1652.2 -9.52 0.09 
BHR101B 8 618.3 11 1100.7 19 1662.7 21 1653.2 -9.52 0.57 
BHR101C 8 618.3 11 1100.7 19 1666.3 20 1655.6 -5.00 0.64 
BHR102A 7 548.1 10 927.5 17.7 1483.9 18 1473.6 -1.85 0.70 
BHR102B 7 553.7 10 927.5 17 1491.8 19 1487.0 -10.53 0.33 
BHR102C 7 548.4 10 923.7 17 1497.0 18 1478.0 -5.56 1.29 
BHR103A 4 473.4 8 784.6 14 1213.6 14 1225.5 0.00 -0.97 
BHR103B 4 473.4 8 784.6 14 1216.8 15 1228.1 -6.67 -0.92 
BHR103C 4 473.4 8 793.8 14 1213.6 15 1224.6 -6.67 -0.90 
BHR104A 4 418.0 6 634.1 10 994.8 12 1014.3 -16.67 -1.92 
BHR104B 4 418.0 6 636.4 10 995.4 11 1025.5 -9.09 -2.93 
BHR104C 4 418.0 6 631.5 10 992.4 12 1019.0 -16.67 -2.61 
BHR105A 5 569.3 8 1014.4 14 1400.6 16 1377.0 -12.50 1.71 
BHR105B 5 567.1 8.3 991.7 14 1408.9 15 1379.9 -6.67 2.10 
BHR105C 5 556.7 8 1013.2 14 1379.1 16 1379.4 -12.50 -0.02 

Total 84 7872.4 129.3 13365.1 222.7 20270.6 243 20282.2 - - 
Average - - - - - - - - -8.37 -0.06 

 

Next, we present computational results for Class 1c instances. The absolute values for the two 

performance measures are shown in Table 6. Here, the sum of the performance measure values of all 

instances that form a group is shown. In addition, the table contains the results of a comparison with 

the results obtained by Wang et al. (2015) where a parallel simulated annealing algorithm including an 

insertion-based heuristic is proposed. Here, again the deviation (11) is used where the hybrid 

algorithm is replaced by the simulated annealing algorithm. The results by Wang et al. (2015) are 

slightly outperformed by the proposed heuristic with respect to the number of vehicles. 

Table 6: Computational results for Class 1c instances 

Wang et al. (2015) BP1R2 Wang et al. (2015)Instances 

nv ttd nv ttd dev(nv) dev(ttd)

Rdp1xx 151 1202.4 147.7 1229.1 -2.21 2.22

Rdp2xx 32 972.1 32.7 976.0 2.08 0.40

Cdp1xx 94 960.4 91.0 983.0 -3.19 2.36

Cdp2xx 24 591.7 24.0 591.8 0.00 0.02

RCdp1xx 98 1415.6 95.3 1441.5 -2.72 1.83

RCdp2xx 27 1162.3 26.3 1204.1 -2.47 3.60

Total 426 1055.7 417.0 1075.6 - -

Average - - - - -2.11 1.88 
 

4.3.2 Results for Class 2 Instances 

Computational results for Class 2a instances are shown in Table 7. We report the sum of the 

corresponding performance measure values over all instances of a group. Moreover, averaged values 

over all instances of an instance group based on the relative measure (11) are reported if appropriate. 

Here, the HH approach is replaced by the algorithms used for comparison, i.e. the algorithm from 

Moura and Oliveira (2009) and from Bortfeldt and Homberger (2013), respectively.  
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Table 7: Computational results for Class 2a instances 
Moura and 

Oliveira (2009) 
Bortfeldt and 
Homberger 

(2013) 

BP1R2 Moura and 
Oliveira (2009) 

Bortfeldt and 
Homberger 

(2013) 

Instances 

nv ttd nv ttd nv ttd dev(nv) dev(ttd) dev(nv) dev(ttd) 
GI-I1 79 891.2 63 543.1 62 546.5 -21.52 -38.67 -1.59 0.63 
GI-I2 54 1715.4 44 551.2 44 527.6 -18.52 -69.24 0.00 -4.28 
GII-I1 91 1251.5 75 604.4 75 579.6 -17.58 -53.69 0.00 -4.10 
GII-I2 75 2907.9 66 557.2 66 541.1 -12.00 -81.39 0.00 -2.90 
Total 299 1664.5 248 564.4 247 549.3 - - - - 

Average - - - - - - -17.39 -67.00 -0.40  -2.67 

 

We see from Table 7 that the results obtained by Moura and Oliveira (2009) and by Bortfeldt and 

Homberger (2013) are outperformed by the proposed BP1R2 heuristic. It turns out that the restarting 

strategy described in Subsection 3.1.3 is worthwhile.  

Computational results for Class 2b instances are presented in Table 8. We see again that the BP1R2 

approach outperforms the original P1R2 approach by Bortfeldt and Homberger (2013) with respect to 

both performance measures. While the improvement for nv  with 0.03% is fairly small, the ttd  values 

are improved by 12.79% on average. The largest improvements are obtained for instances with a large 

number of customers. 

Table 8: Computational results for Class 2b instances 
Bortfeldt and Homberger 

(2013) 
BP1R2 Bortfeldt and 

Homberger (2013) 
#customers 

nv ttd nv ttd dev(nv) dev(ttd) 
100 303 1363.9 299.7 1322.0 -1.10 -3.07 
200 564 5445.4 564.0 4965.3 0.00 -8.82 
400 1120 13647.0 1120.0 12336.0 0.00 -9.61 
600 1680 32587.1 1680.0 28087.7 0.00 -13.81 
800 2238 56664.3 2238.0 49275.7 0.00 -13.04 
1000 2801 87396.5 2801.3 75908.8 0.01 -13.14 
Total 8706 32850.7 8703.0 28649.2 - - 

Average - - - - -0.03 -12.79 

 

4.3.3 Results for the Class 3 Instances 

We start by presenting results for the 3L-VRPCBTW in Table 9. Both the absolute performance 

measure values and the corresponding values relative to the initial solution found by the modified 

savings heuristic are reported using expression (11). 

Table 9: Computational results for 3L-VRPCBTW instances 
#customers nv ttd dev(nv) dev(ttd) 

25 111.0 545.9 -53.36 -21.58 
100 213.7 1949.6 -54.73 -23.97 
200 269.7 5306.4 -67.03 -41.96 
400 484.3 10341.1 -63.69 -47.26 
600 834.3 22327.6 -52.10 -43.08 
800 1118.7 52602.6 -63.48 -44.79 

1000 1749.3 84560.7 -55.93 -43.83 
Total 4781.0 22272.5 - - 

Average - - -58.91 -43.92 
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We see from Table 9 that the initial solution is strongly improved by the metaheuristic approach. 

Improvements up to 67% and 47% for nv  and ttd , respectively, are possible. 

Next, we discuss computational results for the 3L-VRPMBTW instances. The corresponding 

results are shown in Table 10. 

Table 10: Computational results for 3L-VRPMBTW instances 
0  1  2  

#customers 
nv ttd tre nv ttd tre nv ttd tre 

25 99.0 481.1 0.0 100.0 479.0 54.4 100.3 491.7 102.2 
100 190.0 1669.8 0.0 192.7 1688.1 264.1 194.3 1706.6 501.7 
200 235.7 4619.2 0.0 237.0 4670.6 844.2 240.3 4684.3 1583.1 
400 431.3 9636.1 0.0 432.7 9701.4 1824.3 434.3 9753.5 3487.8 
600 765.7 22368.4 0.0 766.3 22258.5 2614.9 767.0 22173.1 5105.0 
800 1009.3 50881.5 0.0 1012.7 51219.5 4017.8 1017.7 51207.4 7893.3 

1000 1558.3 83011.7 0.0 1564.3 82799.3 4242.5 1567.7 83461.0 8321.5 
Total 4289.3 21643.6 0.0 4305.7 21661.9 1739.6 4321.7 21746.2 3387.1 

5  double-deck widthwise 
 

nv ttd tre nv ttd tre nv ttd tre 
25 103.7 508.4 181.5 151.0 568.9 0.0 154.0 584.5 0.0 
100 197.7 1731.1 1020.7 311.0 1986.6 0.0 317.0 2053.8 0.0 
200 246.3 4829.1 3268.9 439.0 7229.4 0.0 474.0 7146.0 0.0 
400 443.0 9850.5 7226.0 764.0 14879.3 0.0 806.0 16519.4 0.0 
600 770.0 22102.6 11323.1 999.3 29378.0 0.0 1010.3 27393.8 0.0 
800 1032.3 50917.5 18538.7 1888.0 83399.9 0.0 1965.3 84575.0 0.0 

1000 1584.7 83201.3 19733.6 2818.7 145019.7 0.0 2919.7 144513.4 0.0 
Total 4377.7 21706.1 7684.3 7371.0 35378.8 0.0 7646.3 35421.3 0.0 

 

The obtained results are depicted in Figure 5 relative to the results obtained for side loading, i.e. for 

0 .  

 

Figure 5: Results for the 3L-VRPMBTW instances relative to the setting 0  

We see from Table 10 and Figure 5 that increasing values for   lead to larger nv  values. Compared 

to the corresponding results for 3L-VRPCBTW instances, we observe that improvements up to 

10.28% for nv  are obtained. Improvements up to 2.82% are possible for the ttd  measure. These 

improvements are expected since the 3L-VRPMBTW offers much more room for improvement 

compared to the 3L-VRPCBTW with its precedence constraints. The expensive unloading and 
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reloading activities can be avoided by considering two separate compartments (cf. Figure 1). The 

obtained results for this setting, however, show that a double-deck loading outperforms the setting 

with widthwise load compartments. But even in the double-deck loading situation around 68% more 

vehicles are required compared to the worst case setting with 5 . The ttd  value is around 63% 

larger in the case of double-deck loading. Overall, considering separate compartments for linehaul and 

backhaul boxes seems to be only reasonable if delays due to unloading and reloading efforts have to 

be avoided. 

Results for the 3L-VRPSDPTW instances are shown in Table 11. The corresponding results 

relative to the results obtained for 0  are presented in Figure 6. 

Table 11: Computational results for 3L-VRPSDPTW instances 
0  1 2  #customers 

nv ttd tre nv ttd tre nv ttd tre
25 94.0 461.6 0.0 96.0 471.1 99.2 102.0 467.2 187.6 
100 196.0 1546.1 0.0 204.3 1607.4 453.4 212.0 1667.1 855.1 
200 258.0 4231.2 0.0 260.3 4356.1 1420.3 266.0 4514.0 2742.7 
400 545.0 10476.8 0.0 545.0 10579.8 2855.0 547.7 10724.9 5559.8 
600 574.0 16455.2 0.0 574.7 16599.9 5746.0 579.7 16466.1 11244.6 
800 1061.3 48158.4 0.0 1061.3 48723.9 6104.7 1064.0 48888.7 12108.3 

1000 1614.0 81396.7 0.0 1614.3 82915.5 6916.5 1617.7 82480.4 13738.9 
Total 4342.3 20398.5 0.0 4356.0 20715.6 2961.8 4389.0 20709.4 5828.1 

5  double-deck widthwise  
nv ttd tre nv ttd tre nv ttd tre

25 110.0 499.0 410.5 150.0 558.1 0.0 154.0 558.1 0.0 
100 238.0 1834.9 1875.5 314.0 1948.9 0.0 322.3 1981.3 0.0 
200 288.3 4611.2 6083.8 495.7 5906.3 0.0 540.3 6268.4 0.0 
400 576.3 10734.9 12449.1 837.3 13458.8 0.0 888.7 13696.4 0.0 
600 610.7 17036.7 25677.3 1019.3 23496.3 0.0 1009.7 23639.7 0.0 
800 1087.7 49824.5 28976.9 2082.7 64608.9 0.0 2171.7 66848.1 0.0 

1000 1643.3 81232.3 32912.1 3115.3 115172.4 0.0 3228.0 118263.3 0.0 
Total 4554.3 20784.1 13599.5 8014.3 28213.5 0.0 8314.7 28976.7 0.0 

 

 

Figure 6: Results for the 3L-VRPSDPTW instances relative to the setting 0  
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We see that similar to the results for the 3L-VRPMBTW increasing   values lead to larger nv  values. 

Even the ttd  values slightly increase in this situation more often than in the 3L-VRPMBTW case. 

Similar results as for the 3L-VRPMBTW case are obtained for the setting with two compartments. 

Again, the setting with widthwise load compartments is outperformed by the setting with double-deck 

loading. Around 76% more vehicles are needed compared to the setting 5 .  

The computational results obtained for the 3L-VRPDDPTW instances are summarized in Table 12. 

All the results relative to the results for 0  are shown in Figure 7.  

Table 12: Computational results for 3L-VRPDDPTW instances 
0  1 2  #customers 

nv ttd tre nv ttd tre nv ttd tre
25 94.0 461.0 0.0 96.0 470.6 98.6 102.0 466.4 187.9 
100 196.0 1545.7 0.0 204.3 1609.9 453.2 212.0 1669.0 854.7 
200 258.0 4232.4 0.0 260.3 4349.2 1418.9 266.0 4513.8 2741.5 
400 545.0 10469.8 0.0 545.0 10584.2 2845.1 547.7 10703.9 5559.7 
600 574.0 16522.9 0.0 575.0 16565.8 5736.4 579.7 16464.3 11234.7 
800 1061.3 48119.0 0.0 1061.0 49004.5 6106.2 1065.0 48376.3 12083.2 

1000 1614.0 81285.9 0.0 1614.3 82725.5 6923.1 1618.0 81851.4 13747.7 
Total 4342.3 20387.2 0.0 4356.0 20722.5 2960.0 4390.3 20564.0 5824.7 

5  double-deck widthwise  
nv ttd tre nv ttd tre nv ttd tre

25 110.0 496.9 405.0 150.0 556.8 0.0 153.0 576.1 0.0 
100 237.7 1841.4 1864.3 314.3 1940.8 0.0 322.3 1977.8 0.0 
200 287.0 4674.2 5991.8 493.7 6072.3 0.0 539.7 6318.9 0.0 
400 568.3 11692.3 11887.5 837.0 13639.6 0.0 887.7 13952.2 0.0 
600 607.3 17272.9 25142.6 1018.0 24045.2 0.0 1008.7 23855.5 0.0 
800 1087.3 50081.8 28939.6 2080.7 65829.1 0.0 2171.3 66750.3 0.0 

1000 1643.7 81313.7 32959.9 3115.3 115437.5 0.0 3226.0 118386.3 0.0 
Total 4541.3 20983.8 13449.5 8009.0 28509.7 0.0 8308.7 29049.1 0.0 

 

 

Figure 7: Results for the 3L-VRPDDPTW instances relative to the setting 0  

We see from Table 12 and Table 11 that only minor improvement with respect to the nv  and to the 

ttd  measures can be obtained for 3L-VRPDDPTW instances compared to 3L-VRPSDPTW instances. 

This effect is caused by the fact that only a single time window per customer is considered in the 
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generated problem instances. The behavior of the setting with two compartments is similar to the 3L-

VRPMBTW and the 3L-VRPSDPTW case. 

4.3.4. Results for the Class 4 Instances 

Because we do not have time windows and we consider the ttd  measure, the different unloading and 

reloading strategies do not lead to different results. We present the obtained computational results for 

the four different 3L-VRPB variants in Table 13. The corresponding columns are labeled by CB, MB, 

SDP, and DDP to indicate the results for the 3L-VRPCB, 3L-VRPMB, 3L-VRPSDP, and 3L-

VRPDDP. Moreover, we present the two deviations  

       %MMMdev 1001VRPCB-3LVRPMB-3L:     (12) 

and  

       %MMMdev 1001VRPSDP-3LVRPDDP-3L:     (13) 

to compare related 3L-VRPB variants. The corresponding columns are denoted by MB/CB (%) and 

DDP/SDP (%), respectively. 

Table 13: Computational results for Class 4 instances 
CB MB MB/CB (%) SDP DDP DDP/SDP(%)#  

cust. nv ttd nv ttd nv ttd nv ttd nv ttd nv ttd
25 86.0 444.5 86.0 402.4 0.00 -9.48 84.0 384.8 84.0 384.6 0.00 -0.04 

100 151.0 1185.4 151.0 1105.5 0.00 -6.74 165.0 1101.1 165.0 1101.1 0.00 0.00 

200 226.0 3821.1 226.0 3563.6 0.00 -6.74 257.0 3350.5 257.0 3350.1 0.00 -0.01 

400 422.7 8860.8 422.7 8406.8 0.00 -5.12 545.0 9023.0 544.0 9638.5 -0.18 6.82 

600 752.3 21798.0 751.0 22477.0 -0.18 3.11 573.0 15147.5 573.0 15145.9 0.00 -0.01 

800 972.7 39280.3 972.0 40306.4 -0.07 2.61 1059.0 35231.5 1056.3 44519.3 -0.25 26.36 

1000 1463.0 69441.0 1463.0 69312.2 0.00 -0.19 1601.3 65966.2 1598.3 76076.5 -0.19 15.33 

Tot. 4073.7 18159.5 4071.7 18247.0 - - 4284.3 16323.7 4277.7 18825.1 - - 

Avg. - - - - -0.05 0.48 - - - - -0.16 15.32 

 
We see from Table 13 and the tables for 3L-VRPBTW instances that as expected the results for the 

3L-VRPB variants outperform the corresponding results for Class 3 instances. This is mainly due to 

the missing time window constraints for Class 4 instances. We also find in Table 13 that the number of 

vehicles is slightly lower for the 3L-VRPMB when compared to the 3L-VRPCB. This improvement is 

obtained by slightly increasing ttd  values. Moreover the nv  values are slightly improved for the 3L-

VRPDDP compared to the 3L-VRPSDP. These reductions are obtained at the expense of increased 

ttd  values for the 3L-VRPDDP instances. 

5 Conclusions and Future Research 

In this paper, we discussed four different 3L-VRPBTW variants. Modifications of the P1R2 heuristic 

are proposed that allow for dealing with backhaul customers. Unloading and reloading of boxes are 

necessary for some of the 3L-VRPBTW variants that increase the service time. In addition to 

conventional rear-loaded vehicles with a single loading space, we consider vehicles with separate 

compartments for linehaul and backhaul customers. Side loading of the vehicles is also studied. The 

performance of the proposed heuristics was investigated by conducting computational experiments 

with benchmark instances from the literature and with new randomly generated problem instances. It 

turned out that high-quality solutions can be computed in a short amount of time. The unloading and 
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reloading strategies outperform the strategies based on separate compartments for boxes of linehaul 

and backhaul customers. The side loading strategy outperforms the remaining strategies.  

There are several directions for future research. First of all, we believe that it is worthwhile to relax 

the assumption that one or two separate segments are assigned to each customer to load the 

corresponding boxes. For the 3L-VRPCBTW it seems possible to directly extend the LNS and the 

VNS approach from Bortfeldt et al. (2015) to this situation. For the remaining three 3L-VRPBTW 

variants it seems necessary to work with separate compartments for linehaul and backhaul boxes. 

Besides the LNS and the VNS approaches, we are interested to extend the unified solution framework 

by Vidal et al. (2014) towards integrated routing and loading decisions. The hybrid genetic algorithm 

proposed by Vidal et al. (2014) is one of the best performing solution approaches for many VRP 

classes.  

Another direction for future research consists in looking at dynamic and stochastic versions of 3L-

VRPBTW variants. It seems to be possible to extend the simulation framework proposed by Sprenger 

and Mönch (2012) to the present situation to allow for an execution of routes in an uncertain 

environment. Moreover, we expect that the sampling approach proposed by von der Linde and Mönch 

(2015) can be used for 3L-VRPBTW variants too.  

References 

Bartók, T.; Imreh, C. (2011): Pickup and Delivery Vehicle Routing with Multidimensional Loading 

Constraints. Acta Cybernetica, 20, 17-33. 

Bischoff, E. E.; Ratcliff, M. S. W. (1995): Issues in the Development of Approaches to Container 

Loading. Omega, 23, 377–390. 

Bortfeldt, A. (2012): A Hybrid Algorithm for the Capacitated Vehicle Routing Problem with Three-

Dimensional Loading Constraints. Computers & Operations Research, 39, 2248-2257. 

Bortfeldt, A.; Gehring, H. (1999): Two Metaheuristics for Strip Packing Problems. Proceedings of the 

Fifth International Conference of the Decision Sciences Institute, Despotis, D. K., Zopounidis, 

C. (eds.), 1153-1156. 

Bortfeldt, A.; Homberger, J. (2013): Packing First, Routing Second – A Heuristic for the Vehicle 

Routing and Loading Problem. Computers & Operations Research, 40, 873-885. 

Bortfeldt, A.; Hahn, T.; Männel, D.; Mönch, L. (2015): Hybrid Algorithms for the Vehicle Routing 

Problem with Clustered Backhauls and 3D Loading Constraints. European Journal of 

Operational Research, 243, 82-96. 

Bortfeldt, A.; Mack, D. (2007): A Heuristic for the Three-dimensional Strip Packing Problem. 

European Journal of Operational Research, 183(3), 1267-1279. 

Bräysy, O.; Gendreau, M. (2005a): Vehicle Routing Problem with Time Windows, Part I: Route 

Construction and Local Search Algorithms. Transportation Science, 39(1), 104-118. 

Bräysy, O.; Gendreau, M. (2005b): Vehicle Routing Problem with Time Windows, Part II: 

Metaheuristics. Transportation Science, 39(1), 119-139. 

Caceres-Cruz, J.; Arias, P.; Guimarans, D.; Riera, D.; Juan, A. A. (2015): Rich Vehicle Routing 

Problem: Survey. ACM Computing Surveys, 47(2). 



 27

Fuellerer, G.; Doerner, K. F.; Hartl, R.; Iori, M. (2010): Metaheuristics for Vehicle Routing Problems 

with Three-dimensional Loading Constraints. European Journal of Operational Research, 201, 

751–759. 

Gelinas, S.; Desrochers, M.; Desrosiers, J.; Solomon, M. M. (1995): A New Branching Strategy for 

Time Constrained Routing Problems with Application to Backhauling. Annals of Operations 

Research, 61, 91-109. 

Gendreau, M.; Iori, M.; Laporte, G.; Martello, S. (2006): A Tabu Search Algorithm for a Routing and 

Container Loading Problem. Transportation Science, 40, 342–350. 

Gehring, H.; Homberger, J. (1999): A Parallel Hybrid Evolutionary Metaheuristic for the Vehicle 

Routing Problem with Time Windows. Proceedings of EUROGEN99-Short Course on 

Evolutionary Algorithms in Engineering and Computer Science, Miettinen, K., Mäkelä, M., 

Toivanen, J. (eds.) Reports of the Department of Mathematical Information Technology, Series 

A. Collections, No. A 2/1999, University of Jyväskylä, 57–64. 

Goetschalckx, M.; Jacobs-Blecha, C. (1989): The Vehicle Routing Problem with Backhauls. European 

Journal of Operational Research, 42, 39-51.  

Homberger, J.; Gehring, H. (2005): A Two-phase Hybrid Metaheuristic for the Vehicle Routing 

Problem with Time Windows. European Journal of Operational Research, 162(1), 220-238.  

Irnich, S.; Toth, P.; Vigo, D. (2014): The Family of Vehicle Routing Prolems.  Chapter 1 in Toth, P., 

Vigo, D. (eds.): Vehicle Routing: Problems, Methods, and Applications. SIAM Monographs on 

Discrete Mathematics and Applications, 2nd edition, Philadelphia, 1-33. 

Küçükoğlu, I.; Öztürk, N. (2015): An Advanced Hybrid Meta-heuristic Algorithm for the Vehicle 

Routing Problem with Backhauls and Time Windows. Computers & Industrial Engineering, 86, 

60-68.  

Lahyani, R.; Khemakhem, M.; Semet, F. (2015): Rich Vehicle Routing Problems: From a Taxonomy 

to a Definition. European Journal of Operational Research, 241, 1-14. 

Malapert, A.; Guéret, C.; Jussien, N.; Langevin, A.; Rousseau, L.-M. (2008): Two-dimensional Pickup 

and Delivery Routing Problem with Loading Constraints. Proceedings of the First CPAIOR 

Workshop on Bin Packing and Placement Constraints (BPPC’08), Paris, France. 

Männel, D.; Bortfeldt, A. (2016): A Hybrid Algorithm for the Vehicle Routing Problem with Pickup 

and Delivery and Three-dimensional Loading Constraints. European Journal of Operational 

Research, 254(3), 840-858. 

Moura, A. (2008): A Multi-objective Genetic Algorithm for the Vehicle Routing Problem with Time 

Windows and Loading. Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., Strangmeier, R. 

(eds.): Intelligent Decision Support: Current Challenges and Approaches, Gabler, Wiesbaden, 

187-201. 

Moura, A.; Olievera, J. F. (2009): An Integrated Approach to the Vehicle Routing and Container 

Loading Problems. OR Spectrum, 31, 775-800. 



 28

Nagata, Y.; Bräysy, O.; Dullaert, W. (2010): A Penalty-based Edge Assembly Memetic Algorithm for 

the Vehicle Routing Problem with Time Windows. Computers & Operations Research, 37(4), 

724–737.  

Parragh, S. N.; Doerner, K. F.; Hartl, R. F. (2008): A Survey on Pickup and Devivery Problems. Part I: 

Transportation between Customers and Depot. Journal für Betriebswirtschaft, 58, 21-51. 

Pinto, T.; Alves, C.; de Carvalho, J. V.; Moura, A. (2015): An Insertion Heuristic for the Capacitated 

Vehicle Routing Problem with Loading Constraints and Mixed Linehauls and Backhauls. FME 

Transactions, 43(4), 311-318. 

Pollaris, H.; Braekers, K.; Caris, A.; Janssens, G. K.; Limbourg, S. (2015): Vehicle Routing Problems 

with Loading Constraints: State-of-the-art and Future Directions. OR Spectrum, 37, 297-330. 

Reimann, M.; Ulrich, H. (2006): Comparing Backhauling Strategies in Vehicle Routing Using Ant 

Colony Optimization. Central European Journal of Operations Research, 14(2), 105-123. 

Ruan, Q.; Zhang, Z.; Miao, L.; Shen, H. (2013): A Hybrid Approach for the Vehicle Routing Problem 

with Three-dimensional Loading Constraints. Computers & Operations Research, 40, 1579-

1589. 

Solomon, M. M. (1987): Algorithms for the Vehicle Routing and Scheduling Problems with Time 

Window Constraints. Operations Research, 35, 254–265. 

Sprenger, R.; Mönch, L. (2012): A Methodology to Solve Large-Scale Cooperative Transportation 

Planning Problems. European Journal of Operational Research, 223, 626–636. 

Tao, Y.; Wang, F. (2015): An efficient Tabu Search Approach with Improved Loading Algorithms for 

the 3L-CVRP. Computers & Operations Research, 55, 127-140. 

Tarantilis, C. D.; Zachariadis, E. E.; Kiranoudis, C. T. (2009): A Hybrid Metaheuristic Algorithm for 

the Integrated Vehicle Routing and Three-dimensional Container-loading Problem. IEEE 

Transactions on Intelligent Transportation Systems, 10, 255–271. 

Toth, P.; Vigo, D. (eds.) (2014): Vehicle Routing: Problems, Methods, and Applications. SIAM 

Monographs on Discrete Mathematics and Applications, 2nd edition, Philadelphia. 

Vidal, T.; Crainic, T. G.; Gendreau, M.; Prins, C. (2014): A Unified Solution Framework for Multi-

attribute Vehicle Routing Problems. European Journal of Operations Research, 234(3), 658-

673. 

von der Linde, R.; Mönch, L. (2015): A Sampling Approach to Solve the Vehicle Routing Problem 

with Time Windows and Stochastic Travel Times. Proceedings of the 6th IESM Conference, 

740-747.  

VRP Instances (2016): http://p2schedgen.fernuni-hagen.de/index.php?id=266. Accessed 2016-

/9/16. 

Wade, A. C.; Salhi, S. (2002): An Investigation into a New Class of Vehicle Routing Problem with 

Backhauls. Omega, 30, 479-487.  

Wang, H.-F.; Chen Y.-Y. (2012): A Genetic Algorithm for the Simultaneous Delivery and Pickup 

Problems with Time Window. Computers & Industrial Engineering, 62(1), 84-95. 



 29

Wang, C.; Mu, D.; Zhao, F.; Sutherland, J. W. (2015): A Parallel Simulated Annealing Method for the 

Vehicle Routing Problem with Simultaneous Pickup-delivery and Time Windows. Computers & 

Industrial Engineering, 83, 111-122. 

Wassan, N. A.; Nagy, G. (2014): Vehicle Routing Problems with Deliveries and Pickups: Modeling 

Issues and Meta-heuristic Solution Approaches. International Journal of Transportation, 2(1), 

95-110. 

Wisniewski, M.; Ritt, M.; Buriol, L. S. (2011): A Tabu Algorithm for the Capacitated Vehicle Routing 

Problem with Three-dimensional Loading Constraints. Anais do XLIII Simpósio Brasileiro de 

Pesquisa Operacional, 1502-1511. 

Zachariadis, E. E.; Tarantilis, C. D.; Kiranoudis, C. T. (2012): The Pallet-Packing Vehicle Routing 

Problem. Transportation Science, 46, 341–358. 

Zachariadis, E. E.; Tarantilis, C. D.; Kiranoudis, C. T. (2016): Vehicle Routing Strategies for Pick-up 

and Delivery Service Under Two Dimensional Loading Constraints. Operational Research. 

Accepted for Publication.  

Zhu, W.; Qin, H.; Lim, A.; Wang, L. (2012): A Two-stage Tabu Search Algorithm with Enhanced 

Packing Heuristics for the 3L-CVRP and M3L-CVRP. Computers & Operations Research, 39, 

2178-2195. 

 



Verzeichnis der zuletzt erschienenen Informatik-Berichte 

 

 

 

[364]  Güting, R.H., Behr, T., Düntgen, C.: 

  Book Chapter: Trajectory Databases; 5/2012 
 

[365]   Paul, A., Rettinger, R., Weihrauch, K.: 

CCA 2012 Ninth International Conference on Computability and 
Complexity in Analysis (extended abstracts), 6/2012 

 

[366]  Lu, J., Güting, R.H.: 

Simple and Efficient Coupling of a Hadoop With a Database Engine, 
10/2012 

 

[367]  Hoyrup, M., Ko, K., Rettinger, R., Zhong, N.: 

CCA 2013 Tenth International Conference on Computability and 
Complexity in Analysis (extended abstracts), 7/2013 

 

[368]  Beierle, C., Kern-Isberner, G.: 

  4th Workshop on Dynamics of Knowledge and Belief (DKB-2013), 
  9/2013 
 
[369] Güting, R.H., Valdés, F., Damiani, M.L.: 
 Symbolic Trajectories, 12/2013 
 
 
[370] Bortfeldt, A., Hahn, T., Männel, D., Mönch, L.: 

 Metaheuristics for the Vehicle Routing Problem with Clustered 
Backhauls and 3D Loading Constraints, 8/2014 

 
 
[371] Güting, R. H., Nidzwetzki, J. K.: 

DISTRIBUTED SECONDO: An extensible highly available and scalable 
database management system, 5/2016 

 
 
[372] M. Kulaš: 

A practical view on substitutions, 7/2016 
 
 
[373]  Fabio Valdés, Ralf Hartmut Güting: 

Index-supported Pattern Matching on Tuples of Time-dependent 
Values, 7/2016 


	reil_heuristics
	Reil_Brotfeld_Mönch_Heuristics_2016

